Characterization of carbon fibers using X-ray phase nanotomography

被引:19
|
作者
Diaz, A. [1 ]
Guizar-Sicairos, M. [1 ]
Poeppel, A. [2 ]
Menzel, A. [1 ]
Bunk, O. [1 ]
机构
[1] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[2] Honda R&D Europe, D-63073 Offenbach, Germany
关键词
HIGH-TENSILE STRENGTH; RETRIEVAL ALGORITHM; TOMOGRAPHY; COMPOSITES;
D O I
10.1016/j.carbon.2013.09.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-ray ptychographic tomography has been recently developed for quantitative imaging of specimens on the nanometer scale. Here we present its application for the characterization of carbon fibers by mapping in three dimensions the mass density of entire fibers with diameters of several tens of micrometers with a resolution of about 100 nm. We characterized two fibers produced from two different precursors, revealing the spatial distribution of porosity and highly graphitized regions within the fibers. We further discuss the potential of ptychographic tomography as a new complementary technique for the characterization of carbon materials. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 50 条
  • [31] Characterization of composition and structure of clay minerals in sandstone with ptychographic X-ray nanotomography
    De Boever, Wesley
    Diaz, Ana
    Derluyn, Hannelore
    De Kock, Tim
    Van Stappen, Jeroen
    Dewanckele, Jan
    Bultreys, Tom
    Boone, Matthieu
    De Schryver, Thomas
    Skjonsfjell, Eirik T. B.
    Holler, Mirko
    Breiby, Dag W.
    Cnudde, Veerle
    APPLIED CLAY SCIENCE, 2015, 118 : 258 - 264
  • [32] Hard X-ray nanotomography of amorphous aluminosilicate cements
    Provis, John L.
    Rose, Volker
    Winarski, Robert P.
    van Deventer, Jannie S. J.
    SCRIPTA MATERIALIA, 2011, 65 (04) : 316 - 319
  • [33] A hard x-ray nanoprobe for scanning and projection nanotomography
    Bleuet, Pierre
    Cloetens, Peter
    Gergaud, Patrice
    Mariolle, Denis
    Chevalier, Nicolas
    Tucoulou, Remi
    Susini, Jean
    Chabli, Amal
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (05):
  • [34] Quantitative nanotomography of amorphous and polycrystalline samples using coherent X-ray diffraction
    Chushkin, Y.
    Zontone, F.
    Cherkas, O.
    Gibaud, A.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 (03) : 571 - 578
  • [35] Current and ultimate limitations of scanning x-ray nanotomography
    McNulty, I
    X-RAY MICRO- AND NANO-FOCUSING: APPLICATIONS AND TECHNIQUES II, 2001, 4499 : 23 - 28
  • [36] Quantifying yield behaviour in metals by X-ray nanotomography
    Mostafavi, M.
    Bradley, R.
    Armstrong, D. E. J.
    Marrow, T. J.
    SCIENTIFIC REPORTS, 2016, 6
  • [37] Quantifying yield behaviour in metals by X-ray nanotomography
    M. Mostafavi
    R. Bradley
    D. E. J. Armstrong
    T. J. Marrow
    Scientific Reports, 6
  • [38] Quantification of sheet nacre morphogenesis using X-ray nanotomography and deep learning
    Beliaev, Maksim
    Zollner, Dana
    Pacureanu, Alexandra
    Zaslansky, Paul
    Bertinetti, Luca
    Zlotnikov, Igor
    JOURNAL OF STRUCTURAL BIOLOGY, 2020, 209 (01)
  • [39] Hard X-ray Nanotomography of Catalytic Solids at Work
    Gonzalez-Jimenez, Ines D.
    Cats, Korneel
    Davidian, Thomas
    Ruitenbeek, Matthijs
    Meirer, Florian
    Liu, Yijin
    Nelson, Johanna
    Andrews, Joy C.
    Pianetta, Piero
    de Groot, Frank M. F.
    Weckhuysen, Bert M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (48) : 11986 - 11990
  • [40] X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure
    Langer, Max
    Pacureanu, Alexandra
    Suhonen, Heikki
    Grimal, Quentin
    Cloetens, Peter
    Peyrin, Francoise
    PLOS ONE, 2012, 7 (08):