Photoelectron tomography with an intra-cavity velocity-map imaging spectrometer at 100 MHz repetition rate

被引:7
|
作者
Oelmann, J-H [1 ,2 ]
Heldt, T. [1 ,2 ]
Guth, L. [1 ]
Nauta, J. [1 ,2 ,3 ]
Lackmann, N. [1 ]
Wossner, V [1 ]
Kokh, S. [1 ]
Pfeifer, T. [1 ]
Crespo Lopez-Urrutia, J. R. [1 ]
机构
[1] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[2] Heidelberg Grad Sch Phys, Neuenheimer Feld 226, D-69120 Heidelberg, Germany
[3] Swansea Univ, Coll Sci, Dept Phys, Singleton Pk, Swansea SA2, W Glam, Wales
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 12期
关键词
ABOVE-THRESHOLD IONIZATION; MULTIPHOTON IONIZATION; FREQUENCY COMB; MOMENTUM SPECTROSCOPY; RECOIL-ION; XENON; STATE; COLLISION; IMAGES; COLD;
D O I
10.1063/5.0104679
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a compact velocity-map imaging (VMI) spectrometer for photoelectron imaging at 100 MHz repetition rate. Ultrashort pulses from a near-infrared frequency comb laser are amplified in a polarization-insensitive passive femtosecond enhancement cavity. In the focus, multi-photon ionization (MPI) of gas-phase atoms is studied tomographically by rotating the laser polarization. We demonstrate the functioning of the VMI spectrometer by reconstructing photoelectron angular momentum distributions from xenon MPI. Our intra-cavity VMI setup collects electron energy spectra at high rates, with the advantage of transferring the coherence of the cavity-stabilized femtosecond pulses to the electrons. In addition, the setup will allow studies of strong-field effects in nanometric tips. (C) 2022 Author(s)
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Anion photoelectron velocity-map imaging using a tunable laser at a 100 kHz repetition rate
    Horio, Takuya
    Nishizato, Tasuku
    Suzuki, Yuta
    Matsumoto, Kazuaki
    Terasaki, Akira
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (02):
  • [2] 100 MHz frequency comb for low-intensity multi-photon studies: intra-cavity velocity-map imaging of xenon
    Nauta, J.
    Oelmann, J-H
    Ackermann, A.
    Knauer, P.
    Pappenberger, R.
    Borodin, A.
    Muhammad, I. S.
    Ledwa, H.
    Pfeifer, T.
    Lopez-Urrutia, J. R. Crespo
    OPTICS LETTERS, 2020, 45 (08) : 2156 - 2159
  • [3] Collinear Velocity-map Photoelectron Imaging Spectrometer for Cluster Anions
    Wu, Xia
    Qin, Zheng-bo
    Xie, Hua
    Wu, Xiao-hu
    Cong, Ran
    Tang, Zi-chao
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2010, 23 (04) : 373 - 380
  • [4] Velocity-map imaging electron spectrometer with time resolution
    Baguenard, B
    Wills, JB
    Pagliarulo, F
    Lépine, F
    Climen, B
    Barbaire, M
    Clavier, C
    Lebeault, MA
    Bordas, C
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (02): : 324 - 328
  • [5] Slow photoelectron velocity-map imaging spectroscopy of the vinoxide anion
    Yacovitch, Tara I.
    Garand, Etienne
    Neumark, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (24):
  • [6] Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions
    Weichman, Marissa L.
    Neumark, Daniel M.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69, 2018, 69 : 101 - 124
  • [7] On the photoelectron velocity-map imaging of lutetium monoxide anion LuO-
    Liu, Zhiling
    Xie, Hua
    Li, Quanjiang
    Qin, Zhengbo
    Cong, Ran
    Wu, Xia
    Tang, Zichao
    Fan, Hongjun
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (03):
  • [8] Slow photoelectron velocity-map imaging spectroscopy of the phenoxide and thiophenoxide anions
    Kim, Jongjin B.
    Yacovitch, Tara I.
    Hock, Christian
    Neumark, Daniel M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (38) : 17378 - 17383
  • [9] Slow photoelectron velocity-map imaging spectroscopy of cold negative ions
    Hock, Christian
    Kim, Jongjin B.
    Weichman, Marissa L.
    Yacovitch, Tara I.
    Neumark, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (24):
  • [10] Slow electron velocity-map imaging photoelectron spectra of the methoxide anion
    Nee, Matthew J.
    Osterwalder, Andreas
    Zhou, Jia
    Neumark, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (01):