Macroscopic Modeling of Plant Water Uptake in a Forest Stand Involving Root-Mediated Soil Water Redistribution

被引:25
|
作者
Vogel, Tomas [1 ]
Dohnal, Michal [1 ]
Dusek, Jaromir [1 ]
Votrubova, Jana [1 ]
Tesar, Miroslav [2 ]
机构
[1] Czech Tech Univ, Fac Civil Engn, CR-16635 Prague, Czech Republic
[2] Acad Sci Czech Republic, Inst Hydrodynam, Prague, Czech Republic
来源
VADOSE ZONE JOURNAL | 2013年 / 12卷 / 01期
关键词
FLUX POTENTIAL APPROACH; HYDRAULIC REDISTRIBUTION; NIGHTTIME TRANSPIRATION; PREFERENTIAL FLOW; HILLSLOPE RUNOFF; EXTRACTION; TRANSPORT; MOISTURE; O-18;
D O I
10.2136/vzj2012.0154
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
One of the principal components of mass exchange within the soil plant atmosphere system is soil water extraction by plant roots. Adequate evaluation of water extraction is a prerequisite for correct predictions of plant transpiration and soil water distribution in the root zone. The main objective of the present study is to contribute to the development of sufficiently realistic, yet algorithmically simple models of water exchange between soil and plant roots applicable for numerical simulation of soil water responses to atmospheric forcing. In our case, a simple macroscopic, vertically distributed plant root water uptake approximation based on a traditional water-potential-gradient (WPG) formulation was adopted and implemented in a one-dimensional dual-continuum model of soil water flow based on the Richards' equation. This combined model was used to simulate soil water movement at a forested site. The results were compared with observations (sap flow, soil water pressure, and soil water content) as well as with simulations produced using the standard semi-empirical model of Feddes. Principal aspects of the WPG prediction, such as root-mediated soil water redistribution, compensation for local water scarcity, and transpiration reduction, are exposed and discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Matching root water uptake patterns to fine root and soil water distributions
    Wei Zhu
    Dehai Zhao
    Nan Di
    Doudou Li
    Ou Zhou
    Yiming Sun
    Liming Jia
    Changjun Ding
    Benye Xi
    Plant and Soil, 2024, 495 : 499 - 516
  • [22] Root water uptake and profile soil water as affected by vertical root distribution
    Yu, Gui-Rui
    Zhuang, Jie
    Nakayama, Keiichi
    Jin, Yan
    PLANT ECOLOGY, 2007, 189 (01) : 15 - 30
  • [23] Root water uptake and profile soil water as affected by vertical root distribution
    Gui-Rui Yu
    Jie Zhuang
    Keiichi Nakayama
    Yan Jin
    Plant Ecology, 2007, 189 : 15 - 30
  • [24] Modelling non-uniform soil water uptake by a single plant root
    Aura, E
    PLANT AND SOIL, 1996, 186 (02) : 237 - 243
  • [25] Modeling soil water movement with water uptake by roots
    Jinquan Wu
    Renduo Zhang
    Shengxiang Gui
    Plant and Soil, 1999, 215 : 7 - 17
  • [26] Modeling soil water movement with water uptake by roots
    Wu, JQ
    Zhang, RD
    Gui, SX
    PLANT AND SOIL, 1999, 215 (01) : 7 - 17
  • [27] Root Water Uptake: From Three-Dimensional Biophysical Processes to Macroscopic Modeling Approaches
    Javaux, Mathieu
    Couvreur, Valentin
    Vanderborght, Jan
    Vereecken, Harry
    VADOSE ZONE JOURNAL, 2013, 12 (04)
  • [28] SOIL-WATER MOVEMENT AND UPTAKE BY PLANTS DURING WATER INFILTRATION AND REDISTRIBUTION
    SELIM, HM
    HAMMOND, LC
    MANSELL, RS
    SOIL AND CROP SCIENCE SOCIETY OF FLORIDA PROCEEDINGS, 1977, 36 : 101 - 107
  • [29] Modeling Moisture Flow in Root Zone: Identification of Soil Hydraulic and Root Water Uptake Parameters
    Sonkar, Ickkshaanshu
    Kaushika, G. S.
    Prasad, K. S. Hari
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2018, 144 (10)
  • [30] Modeling water uptake by plant roots
    Mathur, S
    Rao, S
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 1999, 125 (03) : 159 - 165