Macroscopic Modeling of Plant Water Uptake in a Forest Stand Involving Root-Mediated Soil Water Redistribution

被引:25
|
作者
Vogel, Tomas [1 ]
Dohnal, Michal [1 ]
Dusek, Jaromir [1 ]
Votrubova, Jana [1 ]
Tesar, Miroslav [2 ]
机构
[1] Czech Tech Univ, Fac Civil Engn, CR-16635 Prague, Czech Republic
[2] Acad Sci Czech Republic, Inst Hydrodynam, Prague, Czech Republic
来源
VADOSE ZONE JOURNAL | 2013年 / 12卷 / 01期
关键词
FLUX POTENTIAL APPROACH; HYDRAULIC REDISTRIBUTION; NIGHTTIME TRANSPIRATION; PREFERENTIAL FLOW; HILLSLOPE RUNOFF; EXTRACTION; TRANSPORT; MOISTURE; O-18;
D O I
10.2136/vzj2012.0154
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
One of the principal components of mass exchange within the soil plant atmosphere system is soil water extraction by plant roots. Adequate evaluation of water extraction is a prerequisite for correct predictions of plant transpiration and soil water distribution in the root zone. The main objective of the present study is to contribute to the development of sufficiently realistic, yet algorithmically simple models of water exchange between soil and plant roots applicable for numerical simulation of soil water responses to atmospheric forcing. In our case, a simple macroscopic, vertically distributed plant root water uptake approximation based on a traditional water-potential-gradient (WPG) formulation was adopted and implemented in a one-dimensional dual-continuum model of soil water flow based on the Richards' equation. This combined model was used to simulate soil water movement at a forested site. The results were compared with observations (sap flow, soil water pressure, and soil water content) as well as with simulations produced using the standard semi-empirical model of Feddes. Principal aspects of the WPG prediction, such as root-mediated soil water redistribution, compensation for local water scarcity, and transpiration reduction, are exposed and discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Root water uptake under heterogeneous soil moisture conditions: an experimental study for unraveling compensatory root water uptake and hydraulic redistribution
    Thomas, Anooja
    Yadav, Brijesh Kumar
    Simunek, Jiri
    PLANT AND SOIL, 2020, 457 (1-2) : 421 - 435
  • [2] Root water uptake under heterogeneous soil moisture conditions: an experimental study for unraveling compensatory root water uptake and hydraulic redistribution
    Anooja Thomas
    Brijesh Kumar Yadav
    Jiří Šimůnek
    Plant and Soil, 2020, 457 : 421 - 435
  • [3] Modeling water uptake by a root system growing in a fixed soil volume
    Blengino Albrieu, Jorge Luis
    Carlos Reginato, Juan
    Alberto Tarzia, Domingo
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (12) : 3434 - 3447
  • [4] Relationship between root water uptake and soil respiration: A modeling perspective
    Teodosio, Bertrand
    Pauwels, Valentijn R. N.
    Loheide, Steven P., II
    Daly, Edoardo
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (08) : 1954 - 1968
  • [5] Matching root water uptake patterns to fine root and soil water distributions
    Zhu, Wei
    Zhao, Dehai
    Di, Nan
    Li, Doudou
    Zhou, Ou
    Sun, Yiming
    Jia, Liming
    Ding, Changjun
    Xi, Benye
    PLANT AND SOIL, 2024, 495 (1-2) : 499 - 516
  • [6] Root Water Uptake: From Three-Dimensional Biophysical Processes to Macroscopic Modeling Approaches
    Javaux, Mathieu
    Couvreur, Valentin
    Vanderborght, Jan
    Vereecken, Harry
    VADOSE ZONE JOURNAL, 2013, 12 (04)
  • [7] Modeling Moisture Flow in Root Zone: Identification of Soil Hydraulic and Root Water Uptake Parameters
    Sonkar, Ickkshaanshu
    Kaushika, G. S.
    Prasad, K. S. Hari
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2018, 144 (10)
  • [8] Root water uptake patterns are controlled by tree species interactions and soil water variability
    Demir, Goekben
    Guswa, Andrew J.
    Filipzik, Janett
    Metzger, Johanna Clara
    Roemermann, Christine
    Hildebrandt, Anke
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (06) : 1441 - 1461
  • [9] Modeling compensated root water and nutrient uptake
    Simunek, Jiri
    Hopmans, Jan W.
    ECOLOGICAL MODELLING, 2009, 220 (04) : 505 - 521
  • [10] Root Water Uptake as Simulated by Three Soil Water Flow Models
    de Willigen, Peter
    van Dam, Jos C.
    Javaux, Mathieu
    Heinen, Marius
    VADOSE ZONE JOURNAL, 2012, 11 (03):