Diamond synthesis from carbon nanofibers at low temperature and low pressure

被引:17
作者
Luo, Chengzhi [1 ,2 ]
Qi, Xiang [1 ,2 ,3 ]
Pan, Chunxu [1 ,2 ,4 ]
Yang, Wenge [5 ,6 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[3] Xiangtan Univ, Fac Mat & Optoelect Phys, Lab Quantum Engn & Micronano Energy Technol, Xiangtan 411105, Peoples R China
[4] Wuhan Univ, Ctr Electron Microscopy, Wuhan 430072, Peoples R China
[5] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China
[6] Carnegie Inst Washington, High Pressure Synerget Consortium HPSynC, Argonne, IL 60439 USA
关键词
NANOTUBES; GROWTH;
D O I
10.1038/srep13879
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we report a new route to synthesize diamond by converting "solid" carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 degrees C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder "solid" carbon nanofibers -> well crystallined carbon nanofibers -> bent graphitic sheets -> onion-liked rings -> diamond single crystal -> the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.
引用
收藏
页数:6
相关论文
共 26 条
[11]   A reduction-pyrolysis-catalysis synthesis of diamond [J].
Li, YD ;
Qian, YT ;
Liao, HW ;
Ding, Y ;
Yang, L ;
Xu, CY ;
Li, FQ ;
Zhou, G .
SCIENCE, 1998, 281 (5374) :246-247
[12]   Diameter-controlling growth of solid-cored carbon nanofibers on a pulse plated iron nanocrystalline substrate in flames [J].
Liu, Yueli ;
Pan, Chunxu ;
Chen, Wen .
MATERIALS RESEARCH BULLETIN, 2008, 43 (12) :3397-3407
[13]   Spark plasma sintering as advanced PM sintering method [J].
Mamedov, V .
POWDER METALLURGY, 2002, 45 (04) :322-328
[14]   Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) [J].
Omori, M .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 287 (02) :183-188
[15]   Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames [J].
Pan, CX ;
Liu, YL ;
Cao, F ;
Wang, JB ;
Ren, YY .
MICRON, 2004, 35 (06) :461-468
[16]   CRUSHING C60 TO DIAMOND AT ROOM-TEMPERATURE [J].
REGUEIRO, MN ;
MONCEAU, P ;
HODEAU, JL .
NATURE, 1992, 355 (6357) :237-239
[17]  
Roy R., 1996, INNOVATIONS MAT RES, V1, P65
[18]   Spark plasma sintering assisted diamond formation from carbon nanotubes at very low pressure [J].
Shen, J ;
Zhang, FM ;
Sun, JF ;
Sun, YQ ;
McCartney, DG .
NANOTECHNOLOGY, 2006, 17 (09) :2187-2191
[19]   Diamond nanorods from carbon nanotubes [J].
Sun, LT ;
Gong, JL ;
Zhu, DZ ;
Zhu, ZY ;
He, SX .
ADVANCED MATERIALS, 2004, 16 (20) :1849-+
[20]   Carbon nanotubes transfer to diamond by laser irradiation [J].
Wei, B ;
Zhang, J ;
Liang, J ;
Liu, W ;
Gao, Z ;
Wu, D .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (05) :402-403