Diamond synthesis from carbon nanofibers at low temperature and low pressure

被引:17
作者
Luo, Chengzhi [1 ,2 ]
Qi, Xiang [1 ,2 ,3 ]
Pan, Chunxu [1 ,2 ,4 ]
Yang, Wenge [5 ,6 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[3] Xiangtan Univ, Fac Mat & Optoelect Phys, Lab Quantum Engn & Micronano Energy Technol, Xiangtan 411105, Peoples R China
[4] Wuhan Univ, Ctr Electron Microscopy, Wuhan 430072, Peoples R China
[5] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China
[6] Carnegie Inst Washington, High Pressure Synerget Consortium HPSynC, Argonne, IL 60439 USA
关键词
NANOTUBES; GROWTH;
D O I
10.1038/srep13879
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we report a new route to synthesize diamond by converting "solid" carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 degrees C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder "solid" carbon nanofibers -> well crystallined carbon nanofibers -> bent graphitic sheets -> onion-liked rings -> diamond single crystal -> the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Aharonovich I, 2011, NAT PHOTONICS, V5, P397, DOI [10.1038/NPHOTON.2011.54, 10.1038/nphoton.2011.54]
[2]   LOW-PRESSURE, METASTABLE GROWTH OF DIAMOND AND DIAMONDLIKE PHASES [J].
ANGUS, JC ;
HAYMAN, CC .
SCIENCE, 1988, 241 (4868) :913-921
[3]   Carbon onions as nanoscopic pressure cells for diamond formation [J].
Banhart, F ;
Ajayan, PM .
NATURE, 1996, 382 (6590) :433-435
[4]   Supercapacitance of solid carbon nanofibers made from ethanol flames [J].
Bao, Qiaoliang ;
Bao, Shujuan ;
Li, Chang Ming ;
Qi, Xiang ;
Pan, Chunxu ;
Zang, Jianfeng ;
Lu, Zhisong ;
Li, Yibin ;
Tang, Ding Yuan ;
Zhang, Sam ;
Lian, Keryn .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3612-3618
[5]   MAN-MADE DIAMONDS [J].
BUNDY, FP ;
HALL, HT ;
STRONG, HM ;
WENTORF, RH .
NATURE, 1955, 176 (4471) :51-55
[6]   CARBON PHASE-TRANSITION BY DYNAMIC SHOCK COMPRESSION OF A COPPER GRAPHITE POWDER MIXTURE [J].
BURKHARD, G ;
DAN, K ;
TANABE, Y ;
SAWAOKA, AB ;
YAMADA, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1994, 33 (6B) :L876-L879
[7]   Spectroscopic study of pressure-polymerized phases of C60 [J].
Davydov, VA ;
Kashevarova, LS ;
Rakhmanina, AV ;
Senyavin, VM ;
Céolin, R ;
Szwarc, H ;
Allouchi, H ;
Agafonov, V .
PHYSICAL REVIEW B, 2000, 61 (18) :11936-11945
[8]   BUCKYBALL MICROWAVE PLASMAS - FRAGMENTATION AND DIAMOND-FILM GROWTH [J].
GRUEN, DM ;
LIU, SZ ;
KRAUSS, AR ;
PAN, XZ .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (03) :1758-1763
[9]   Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes [J].
Hou, YQ ;
Zhuang, DM ;
Zhang, G ;
Wu, MS ;
Liu, JJ .
APPLIED SURFACE SCIENCE, 2002, 185 (3-4) :303-308
[10]   Polymerization of single-wall carbon nanotubes under high pressures and high temperatures [J].
Khabashesku, VN ;
Gu, ZN ;
Brinson, B ;
Zimmerman, JL ;
Margrave, JL ;
Davydov, VA ;
Kashevarova, LS ;
Rakhmanina, AV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (43) :11155-11162