REDUCED-ORDER MODELS OF MISTUNED CRACKED BLADED DISKS

被引:0
作者
Marinescu, Olguta [1 ]
Epureanu, Bogdan I.
Banu, Mihaela [1 ]
机构
[1] Univ Dunarea de Jos Galati, Dept Mfg Sci Robot & Welding, Galati 800201, Romania
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 8, PTS A AND B | 2012年
关键词
DYNAMIC-RESPONSE; VIBRATION; BEAMS; ROTOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology which can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates. That allows for an effective model reduction based on (fixed-interface Craig-Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning (CMM) which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 27 条
  • [1] THE MODELING OF THE OPENING AND CLOSURE OF A CRACK
    ABRAHAM, ONL
    BRANDON, JA
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (03): : 370 - 377
  • [2] Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling
    Bladh, R
    Pierre, C
    Castanier, MP
    Kruse, MJ
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 311 - 324
  • [3] Component-mode-based reduced order modeling techniques for mistuned bladed disks - Part I: Theoretical models
    Bladh, R
    Castanier, MP
    Pierre, C
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2001, 123 (01): : 89 - 99
  • [4] Vibration of a beam with a breathing crack
    Chondros, TG
    Dimarogonas, AD
    Yao, J
    [J]. JOURNAL OF SOUND AND VIBRATION, 2001, 239 (01) : 57 - 67
  • [5] Vibration of a cracked cantilever beam
    Chondros, TG
    Dimarogonas, AD
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1998, 120 (03): : 742 - 746
  • [6] COUPLING OF SUBSTRUCTURES FOR DYNAMIC ANALYSES
    CRAIG, RR
    BAMPTON, MCC
    [J]. AIAA JOURNAL, 1968, 6 (07) : 1313 - &
  • [7] Dimarogonas A., 1976, Vibration Engineering
  • [8] Dimarogonas A. D, 1971, INTERNAL REPORT
  • [9] Dimarogonas A. D, 1970, INTERNAL REPORT
  • [10] A fundamental model of mistuning for a single family of modes
    Feiner, DM
    Griffin, JH
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2002, 124 (04): : 597 - 605