PATCH-BASED FULLY CONVOLUTIONAL NEURAL NETWORK WITH SKIP CONNECTIONS FOR RETINAL BLOOD VESSEL SEGMENTATION

被引:0
作者
Feng, Zhongwei [1 ]
Yang, Jie [1 ]
Yao, Lixiu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
来源
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2017年
关键词
Computer Aided Diagnosis; Convolutional Neural Networks; Retinal Blood Vessel Segmentation; Local Entropy Sampling; Class-balancing Loss; IMAGES;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Automated segmentation of retinal blood vessels plays an important role in the computer aided diagnosis of retinal diseases. The paper presents a new formulation of patch-based fully Convolutional Neural Networks (CNNs) that allows accurate segmentation of the retinal blood vessels. A major modification in this retinal blood vessel segmentation task is to improve and speed-up the patch-based fully CNN training by local entropy sampling and a skip CNN architecture with class-balancing loss. The proposed method is experimented on DRIVE dataset and achieves strong performance and significantly outperforms the-state-of-the-art for retinal blood vessel segmentation with 78.11% sensitivity, 98.39% specificity, 95.60% accuracy, 87.36% precision and 97.92% AUC score respectively.
引用
收藏
页码:1742 / 1746
页数:5
相关论文
共 17 条
[1]  
[Anonymous], P IEEE INT C COMP VI
[2]  
[Anonymous], 2016, ENSEMBLE DEEP CONVOL
[3]   Trainable COSFIRE filters for vessel delineation with application to retinal images [J].
Azzopardi, George ;
Strisciuglio, Nicola ;
Vento, Mario ;
Petkov, Nicolai .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :46-57
[4]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[5]   N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms [J].
Ganin, Yaroslav ;
Lempitsky, Victor .
COMPUTER VISION - ACCV 2014, PT II, 2015, 9004 :536-551
[6]   Region-Based Convolutional Networks for Accurate Object Detection and Segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (01) :142-158
[7]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[8]  
Lahiri A, 2016, IEEE ENG MED BIO, P1340, DOI 10.1109/EMBC.2016.7590955
[9]   Segmenting Retinal Blood Vessels With Deep Neural Networks [J].
Liskowski, Pawel ;
Krawiec, Krzysztof .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (11) :2369-2380
[10]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965