Shared network pattern of lung squamous carcinoma and adenocarcinoma illuminates therapeutic targets for non-small cell lung cancer

被引:3
作者
Li, Piaopiao [1 ]
Kuang, Xuemei [2 ]
Zhang, Tingting [1 ]
Ma, Lei [1 ]
机构
[1] Shihezi Univ, Coll Life Sci, Shihezi, Xinjiang Uyghur, Peoples R China
[2] Shihezi Univ, Affiliated Hosp 1, Coll Med, Shihezi, Peoples R China
基金
中国国家自然科学基金;
关键词
non-small cell lung cancer; lung squamous carcinoma; lung adenocarcinoma; co-expression network; prognostic markers;
D O I
10.3389/fsurg.2022.958479
中图分类号
R61 [外科手术学];
学科分类号
摘要
BackgroundNon-small cell lung cancer (NSCLC) is a malignant tumor with high mortality. Lung squamous carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the common subtypes of NSCLC. However, how LUSC and LUAD are compatible remains to be elucidated. MethodsWe used a network approach to find highly interconnected genes shared with LUSC and LUAD, and we then built modules to assess the degree of preservation between them. To quantify this result, Z-scores were used to summarize the interrelationships between LUSC and LUAD. Furthermore, we correlated network hub genes with patient survival time to identify risk factors. ResultsOur findings provided a look at the regulatory pattern for LUSC and LUAD. For LUSC, several genes, such as AKR1C1, AKR1C2, and AKR1C3, play key roles in regulating network modules of cell growth pathways. In addition, CCL19, CCR7, CCL21, and LY9 are enriched in LUAD network modules of T lymphocyte-related pathways. LUSC and LUAD have similar expressed gene expression patterns. Their networks share 46 hub genes with connectivity greater than 0.9. These genes are correlated with patient survival time. Among them, the expression level of COL5A2 in LUSC and LUAD is higher than that in normal tissues, which is closely related to the poor prognosis of LUSC and LUAD patients. ConclusionLUSC and LUAD share a network pattern. COL5A2 may be a risk factor in poor prognosis in LUSC and LUAD. The common landscape of LUSC and LUAD will help better define the regulation of NSCLC candidate genes and achieve the goals of precision medicine.
引用
收藏
页数:9
相关论文
共 35 条
[1]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[2]   Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas [J].
Campbell, Joshua D. ;
Alexandrov, Anton ;
Kim, Jaegil ;
Wala, Jeremiah ;
Berger, Alice H. ;
Pedamallu, Chandra Sekhar ;
Shukla, Sachet A. ;
Guo, Guangwu ;
Brooks, Angela N. ;
Murray, Bradley A. ;
Imielinski, Marcin ;
Hu, Xin ;
Ling, Shiyun ;
Akbani, Rehan ;
Rosenberg, Mara ;
Cibulskis, Carrie ;
Ramachandran, Aruna ;
Collisson, Eric A. ;
Kwiatkowski, David J. ;
Lawrence, Michael S. ;
Weinstein, John N. ;
Verhaak, Roel G. W. ;
Wu, Catherine J. ;
Hammerman, Peter S. ;
Cherniack, Andrew D. ;
Getz, Gad ;
Artyomov, Maxim N. ;
Schreiber, Robert ;
Govindan, Ramaswamy ;
Meyerson, Matthew .
NATURE GENETICS, 2016, 48 (06) :607-+
[3]   Differential clinical significance of COL5A1 and COL5A2 in tongue squamous cell carcinoma [J].
Chen, Hung-Chih ;
Tseng, Yu-Kai ;
Shu, Chih-Wen ;
Weng, Ta-Jung ;
Liou, Huei-Han ;
Yen, Liang-Ming ;
Hsieh, I-Chien ;
Wang, Cheng-Ching ;
Wu, Pi-Chuan ;
Shiue, Yow-Ling ;
Fu, Ting-Ying ;
Tsai, Kuo-Wang ;
Ger, Luo-Ping ;
Liu, Pei-Feng .
JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2019, 48 (06) :468-476
[4]   Differentiated regulation of immune-response related genes between LUAD and LUSC subtypes of lung cancers [J].
Chen, Mengzhu ;
Liu, Xiuying ;
Du, Jie ;
Wang, Xiu-Jie ;
Xia, Lixin .
ONCOTARGET, 2017, 8 (01) :133-144
[5]   Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients' skin fibroblasts [J].
Chiarelli, Nicola ;
Carini, Giulia ;
Zoppi, Nicoletta ;
Ritelli, Marco ;
Colombi, Marina .
PLOS ONE, 2019, 14 (02)
[6]   Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells [J].
Chien, Chia-Wen ;
Ho, I-Ching ;
Lee, Te-Chang .
CARCINOGENESIS, 2009, 30 (10) :1813-1820
[7]   Comprehensive molecular profiling of lung adenocarcinoma [J].
Collisson, Eric A. ;
Campbell, Joshua D. ;
Brooks, Angela N. ;
Berger, Alice H. ;
Lee, William ;
Chmielecki, Juliann ;
Beer, David G. ;
Cope, Leslie ;
Creighton, Chad J. ;
Danilova, Ludmila ;
Ding, Li ;
Getz, Gad ;
Hammerman, Peter S. ;
Hayes, D. Neil ;
Hernandez, Bryan ;
Herman, James G. ;
Heymach, John V. ;
Jurisica, Igor ;
Kucherlapati, Raju ;
Kwiatkowski, David ;
Ladanyi, Marc ;
Robertson, Gordon ;
Schultz, Nikolaus ;
Shen, Ronglai ;
Sinha, Rileen ;
Sougnez, Carrie ;
Tsao, Ming-Sound ;
Travis, William D. ;
Weinstein, John N. ;
Wigle, Dennis A. ;
Wilkerson, Matthew D. ;
Chu, Andy ;
Cherniack, Andrew D. ;
Hadjipanayis, Angela ;
Rosenberg, Mara ;
Weisenberger, Daniel J. ;
Laird, Peter W. ;
Radenbaugh, Amie ;
Ma, Singer ;
Stuart, Joshua M. ;
Byers, Lauren Averett ;
Baylin, Stephen B. ;
Govindan, Ramaswamy ;
Meyerson, Matthew ;
Rosenberg, Mara ;
Gabriel, Stacey B. ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Kim, Jaegil ;
Stewart, Chip .
NATURE, 2014, 511 (7511) :543-550
[8]   The Comparative Toxicogenomics Database: update 2019 [J].
Davis, Allan Peter ;
Grondin, Cynthia J. ;
Johnson, Robin J. ;
Sciaky, Daniela ;
McMorran, Roy ;
Wiegers, Jolene ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D948-D954
[9]   Integrative Analysis Reveals Across-Cancer Expression Patterns and Clinical Relevance of Ribonucleotide Reductase in Human Cancers [J].
Ding, Yongfeng ;
Zhong, Tingting ;
Wang, Min ;
Xiang, Xueping ;
Ren, Guoping ;
Jia, Zhongjuan ;
Lin, Qinghui ;
Liu, Qian ;
Dong, Jingwen ;
Li, Linrong ;
Li, Xiawei ;
Jiang, Haiping ;
Zhu, Lijun ;
Li, Haoran ;
Shen, Dejun ;
Teng, Lisong ;
Li, Chen ;
Shao, Jimin .
FRONTIERS IN ONCOLOGY, 2019, 9
[10]   LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p [J].
Dong, Hui-Xing ;
Wang, Ren ;
Jin, Xiao-Yan ;
Zeng, Jian ;
Pan, Jing .
JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (05) :4126-4136