Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC

被引:10
作者
Kholod, Yana [1 ]
DeFilippo, Michael [1 ]
Reed, Brittany [1 ]
Valdez, Danielle [1 ]
Gillan, Grant [1 ]
Kosenkov, Dmytro [1 ]
机构
[1] Monmouth Univ, Dept Chem & Phys, 400 Cedar Ave, West Long Branch, NJ 07764 USA
基金
美国国家科学基金会;
关键词
Forster; FRET; exciton; molecular fragments; Fenna-Matthews-Olson complex; FMO COMPLEX; EXCITONIC STRUCTURE; SPECTRAL DENSITY; BACTERIOCHLOROPHYLL; TEPIDUM; POLARIZATION; MICROSCOPY; MIGRATION; QM/MM; SITE;
D O I
10.1002/jcc.25134
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excitation energy transfer (EET) determines the fate of sunlight energy absorbed by light-harvesting proteins in natural photosynthetic systems and photovoltaic cells. As previously reported (D. Kosenkov, J. Comput. Chem. 2016, 37(19), 1847), PyFREC software enables computation of electronic couplings between organic molecules with a molecular fragmentation approach. The present work reports implementation of direct fragmentation-based computation of the electronic couplings and EET rates in pigment-protein complexes within the Forster theory in PyFREC. The new feature enables assessment of EET pathways in a wide range of photosynthetic complexes, as well as artificial molecular architectures that include light-harvesting proteins or tagged fluorescent biomolecules. The developed methodology has been tested analyzing EET in the Fenna-Matthews-Olson (FMO) pigment-protein complex. The pathways of excitation energy transfer in FMO have been identified based on the kinetics studies. (c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:438 / 449
页数:12
相关论文
共 55 条
[31]   Dye chemistry with time-dependent density functional theory [J].
Laurent, Adele D. ;
Adamo, Carlo ;
Jacquemin, Denis .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) :14334-14356
[32]   From Atomistic Modeling to Excitation Transfer and Two-Dimensional Spectra of the FMO Light-Harvesting Complex [J].
Olbrich, Carsten ;
Jansen, Thomas L. C. ;
Liebers, Joerg ;
Aghtar, Mortaza ;
Struempfer, Johan ;
Schulten, Klaus ;
Knoester, Jasper ;
Kleinekathoefer, Ulrich .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (26) :8609-8621
[33]   Use of Forster's resonance energy transfer microscopy to study lipid rafts [J].
Rao, M ;
Mayor, S .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2005, 1746 (03) :221-233
[34]   Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy [J].
Read, Elizabeth L. ;
Schlau-Cohen, Gabriela S. ;
Engel, Gregory S. ;
Wen, Jianzhong ;
Blankenship, Robert E. ;
Fleming, Graham R. .
BIOPHYSICAL JOURNAL, 2008, 95 (02) :847-856
[35]   Resonance Energy Transfer Enables Efficient Planar Heterojunction Organic Solar Cells [J].
Reid, Obadiah G. ;
Rumbles, Garry .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) :87-97
[36]   Theory of excitation energy transfer: from structure to function [J].
Renger, Thomas .
PHOTOSYNTHESIS RESEARCH, 2009, 102 (2-3) :471-485
[37]   Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria [J].
Ritz, T ;
Park, S ;
Schulten, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (34) :8259-8267
[38]   Influence of Site-Dependent Pigment-Protein Interactions on Excitation Energy Transfer in Photosynthetic Light Harvesting [J].
Rivera, Eva ;
Montemayor, Daniel ;
Masia, Marco ;
Coker, David F. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (18) :5510-5521
[39]   Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach [J].
Saer, Rafael G. ;
Stadnytskyi, Valentyn ;
Magdaong, Nikki C. ;
Goodson, Carrie ;
Savikhin, Sergei ;
Blankenship, Robert E. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2017, 1858 (04) :288-296
[40]   Toward level-to-level energy transfers in photosynthesis: The Fenna-Matthews-Olson protein [J].
Savikhin, S ;
Buck, DR ;
Struve, WS .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (29) :5556-5565