Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions

被引:18
作者
Bischoff, D. [1 ]
Varlet, A. [1 ]
Simonet, P. [1 ]
Ihn, T. [1 ]
Ensslin, K. [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
基金
瑞士国家科学基金会;
关键词
QUANTUM DOTS; EXCITED-STATES; CONFINEMENT;
D O I
10.1088/1367-2630/15/8/083029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum dot has been etched in bilayer graphene connected by two small constrictions to the leads. We show that this structure does not behave like a single quantum dot but consists of at least three sites of localized charge in series. The high symmetry and electrical stability of the device allowed us to triangulate the positions of the different sites of localized charge and find that one site is located in the island and one in each of the constrictions. Nevertheless we measure many consecutive non-overlapping Coulomb-diamonds in series. In order to describe these findings, we treat the system as a strongly coupled serial triple quantum dot. We find that the non-overlapping Coulomb diamonds arise due to higher order cotunneling through the outer dots located in the constrictions. We extract all relevant capacitances, simulate the measured data with a capacitance model and discuss its implications on electrical transport.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [2] Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate
    Bischoff, D.
    Kraehenmann, T.
    Droescher, S.
    Gruner, M. A.
    Barraud, C.
    Ihn, T.
    Ensslin, K.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (20)
  • [3] Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs
    Bluhm, Hendrik
    Foletti, Sandra
    Neder, Izhar
    Rudner, Mark
    Mahalu, Diana
    Umansky, Vladimir
    Yacoby, Amir
    [J]. NATURE PHYSICS, 2011, 7 (02) : 109 - 113
  • [4] Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots
    Bunch, JS
    Yaish, Y
    Brink, M
    Bolotin, K
    McEuen, PL
    [J]. NANO LETTERS, 2005, 5 (02) : 287 - 290
  • [5] Electron cotunneling in a semiconductor quantum dot
    De Franceschi, S
    Sasaki, S
    Elzerman, JM
    van der Wiel, WG
    Tarucha, S
    Kouwenhoven, LP
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 878 - 881
  • [6] High-frequency gate manipulation of a bilayer graphene quantum dot
    Droescher, S.
    Guettinger, J.
    Mathis, T.
    Batlogg, B.
    Ihn, T.
    Ensslin, K.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (04)
  • [7] Stability diagram of a few-electron triple dot
    Gaudreau, L.
    Studenikin, S. A.
    Sachrajda, A. S.
    Zawadzki, P.
    Kam, A.
    Lapointe, J.
    Korkusinski, M.
    Hawrylak, P.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (03)
  • [8] Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices
    Goossens, Augustinus M.
    Driessen, Stefanie C. M.
    Baart, Tim A.
    Watanabe, Kenji
    Taniguchi, Takashi
    Vandersypen, Lieven M. K.
    [J]. NANO LETTERS, 2012, 12 (09) : 4656 - 4660
  • [9] A triple quantum dot in a single-wall carbon nanotube
    Grove-Rasmussen, K.
    Jorgensen, H. I.
    Hayashi, T.
    Lindelof, P. E.
    Fujisawa, T.
    [J]. NANO LETTERS, 2008, 8 (04) : 1055 - 1060
  • [10] Time-resolved charge detection in graphene quantum dots
    Guettinger, J.
    Seif, J.
    Stampfer, C.
    Capelli, A.
    Ensslin, K.
    Ihn, T.
    [J]. PHYSICAL REVIEW B, 2011, 83 (16)