TIME-SPLITTING SCHEMES FOR FRACTIONAL DIFFERENTIAL EQUATIONS I: SMOOTH SOLUTIONS

被引:28
作者
Cao, Wanrong [1 ]
Zhang, Zhongqiang [2 ]
Karniadakis, George Em [3 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
time-fractional derivatives; multirate systems; stiff systems; PREDICTOR-CORRECTOR APPROACH; VOLTERRA INTEGRAL-EQUATIONS; COMPACT ADI SCHEME; DIFFUSION EQUATION; INTEGRODIFFERENTIAL EQUATIONS; SUBDIFFUSION EQUATION; MULTISTEP METHODS; ERROR ANALYSIS; 2ND KIND; STABILITY;
D O I
10.1137/140996495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose three time-splitting schemes for nonlinear time-fractional differential equations with smooth solutions, where the order of the fractional derivative is 0 < alpha < 1. While one of the schemes is of order a, the other two schemes are of order 1 + alpha and 2 - alpha and thus they can be combined to provide flexible numerical methods with convergence order no less than 3/2. We prove the convergence and stability of the proposed schemes. Numerical examples illustrate the flexibility and the efficiency of these time-splitting schemes and show that they work for multirate and stiff time-fractional differential systems effectively.
引用
收藏
页码:A1752 / A1776
页数:25
相关论文
共 44 条
[1]   The heterogeneous multiscale method [J].
Abdulle, Assyr ;
Weinan, E. ;
Engquist, Bjoern ;
Vanden-Eijnden, Eric .
ACTA NUMERICA, 2012, 21 :1-87
[2]  
[Anonymous], 2010, LECT NOTES MATH
[3]  
[Anonymous], 2007, FRACT CALC APPL ANAL
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Numerical simulation for the three-dimension fractional sub-diffusion equation [J].
Chen, J. ;
Liu, F. ;
Liu, Q. ;
Chen, X. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) :3695-3705
[6]   Natural Volterra Runge-Kutta methods [J].
Conte, Dajana ;
D'Ambrosio, Raffaele ;
Izzo, Giuseppe ;
Jackiewicz, Zdzislaw .
NUMERICAL ALGORITHMS, 2014, 65 (03) :421-445
[7]   A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces [J].
Cuesta, E ;
Palencia, C .
APPLIED NUMERICAL MATHEMATICS, 2003, 45 (2-3) :139-159
[8]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[9]   A new predictor-corrector method for fractional differential equations [J].
Daftardar-Gejji, Varsha ;
Sukale, Yogita ;
Bhalekar, Sachin .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 :158-182
[10]   Short memory principle and a predictor-corrector approach for fractional differential equations [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :174-188