Elucidating space, climate, edaphic, and biodiversity effects on aboveground biomass in tropical forests

被引:23
作者
Ali, Arshad [1 ]
Lin, Si-Liang [1 ]
He, Jie-Kun [1 ]
Kong, Fan-Mao [2 ]
Yu, Jie-Hua [1 ]
Jiang, Hai-Sheng [1 ]
机构
[1] South China Normal Univ, Sch Life Sci, Spatial Ecol Lab, Guangzhou 510631, Guangdong, Peoples R China
[2] Guangzhou Qimao Ecol Technol Co Ltd, Guangzhou 510631, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
ecosystem functioning; energy-richness; mass ratio; niche complementarity; space effect; water-energy dynamics; SPECIES-DIVERSITY; CARBON STORAGE; PLANT DIVERSITY; PRODUCTIVITY; GRADIENTS; TEMPERATE; DROUGHT; RATES; WATER; RESILIENCE;
D O I
10.1002/ldr.3278
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aim and hypothesis This study aims to disentangle the direct and indirect roles of space, climate, edaphic, and biodiversity effects on aboveground biomass in natural tropical forests, thereby evaluating the relative effects and contribution of abiotic and biotic factors on aboveground biomass. We hypothesized that the space effect drives the longitudinal, latitudinal, and elevational patterns in climatic and edaphic factors, thereby directly and indirectly determining the relationships between biodiversity and aboveground biomass in natural tropical forests. Methods We used structural equation modelling for linking spatial, climatic, edaphic, and biotic factors of aboveground biomass, using data from 247,691 trees across 907 tropical forest plots (total sampling area of 145.23 ha) of Hainan Island in Southern China. Results Aboveground biomass increased directly with functional dominance, individual tree size inequality, and climatic water availability but decreased directly with space and edaphic effects. However, space effect increased aboveground biomass indirectly via simultaneously differential direct changes (positive, negative, and non-significant) in climatic, edaphic, and biotic factors. As such, indirect effects of mean annual temperature and climatic water availability decreased aboveground biomass through differential direct changes in biotic factors, but opposite was true for soil fertility. Conclusions We argue that, despite the high relative contribution of biodiversity to aboveground biomass, the direct and indirect roles of space, climatic, and edaphic effects are also important for explaining biotic factors and aboveground biomass under the predictions of several abiotic-based hypotheses. Hence, conserving biodiversity across space is important for forest management and land development under climate change.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 59 条
[1]   Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests [J].
Ali, Arshad ;
Lin, Si-Liang ;
He, Jie-Kun ;
Kong, Fan-Mao ;
Yu, Jie-Hua ;
Jiang, Hai-Sheng .
FOREST ECOLOGY AND MANAGEMENT, 2019, 432 :823-831
[2]   Climatic water availability is the main limiting factor of biotic attributes across large-scale elevational gradients in tropical forests [J].
Ali, Arshad ;
Lin, Si-Liang ;
He, Jie-Kun ;
Kong, Fan-Mao ;
Yu, Jie-Hua ;
Jiang, Hai-Sheng .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 647 :1211-1221
[3]   Forest strata-dependent functional evenness explains whole-community aboveground biomass through opposing mechanisms [J].
Ali, Arshad ;
Lohbeck, Madelon ;
Yan, En-Rong .
FOREST ECOLOGY AND MANAGEMENT, 2018, 424 :439-447
[4]   Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest [J].
Ali, Arshad ;
Yan, En-Rong .
ECOLOGICAL INDICATORS, 2017, 83 :158-168
[5]   The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest [J].
Ali, Arshad ;
Yan, En-Rong .
FOREST ECOLOGY AND MANAGEMENT, 2017, 401 :125-134
[6]   A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J].
Allen, Craig D. ;
Macalady, Alison K. ;
Chenchouni, Haroun ;
Bachelet, Dominique ;
McDowell, Nate ;
Vennetier, Michel ;
Kitzberger, Thomas ;
Rigling, Andreas ;
Breshears, David D. ;
Hogg, E. H. ;
Gonzalez, Patrick ;
Fensham, Rod ;
Zhang, Zhen ;
Castro, Jorge ;
Demidova, Natalia ;
Lim, Jong-Hwan ;
Allard, Gillian ;
Running, Steven W. ;
Semerci, Akkin ;
Cobb, Neil .
FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) :660-684
[7]   Temperature-dependence of biomass accumulation rates during secondary succession [J].
Anderson, Kristina J. ;
Allen, Andrew P. ;
Gillooly, James F. ;
Brown, James H. .
ECOLOGY LETTERS, 2006, 9 (06) :673-682
[8]  
[Anonymous], R VERS 3 4 2 R FDN S
[9]   EFFECTS OF ARIDITY ON PLANT DIVERSITY IN THE NORTHERN CHILEAN ANDES - RESULTS OF A NATURAL EXPERIMENT [J].
ARROYO, MTK ;
SQUEO, FA ;
ARMESTO, JJ ;
VILLAGRAN, C .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1988, 75 (01) :55-78
[10]   Long-term decline in grassland productivity driven by increasing dryness [J].
Brookshire, E. N. J. ;
Weaver, T. .
NATURE COMMUNICATIONS, 2015, 6