Tuning Quantum Dot Luminescence Below the Bulk Band Gap Using Tensile Strain

被引:31
作者
Simmonds, Paul J. [1 ,2 ]
Yerino, Christopher D. [1 ]
Sun, Meng [3 ]
Liang, Baolai [2 ]
Huffaker, Diana L. [2 ,3 ]
Dorogan, Vitaliy G. [4 ]
Mazur, Yuriy [4 ]
Salamo, Gregory [4 ]
Lee, Minjoo Larry [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[4] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
quantum dots; self-assembled growth; molecular beam epitaxy; tensile strain; band gap engineering; strain engineering; InP(110); PHOTOLUMINESCENCE SPECTRA; GERMANIUM; GROWTH; GE; LOCALIZATION; ISLANDS; INGAAS;
D O I
10.1021/nn400395y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembled quantum dots (SAQDs) grown under biaxial tension could enable novel devices by taking advantage of the strong band gap reduction induced by tensile strain. Tensile SAQDs with low optical transition energies could find application in the technologically important area of mid-infrared optoelectronics. In the case of Ge, biaxial tension can even cause a highly desirable crossover from an indirect- to a direct-gap band structure. However, the inability to grow tensile SAQDs without dislocations has impeded progress in these directions. In this article, we demonstrate a method to grow dislocation-free, tensile SAQDs by employing the unique strain relief mechanisms of (110)-oriented surfaces. As a model system, we show that tensile GaAs SAQDs form spontaneously, controllably, and without dislocations on InAlAs(110) surfaces. The tensile strain reduces the band gap in GaAs SAQDs by similar to 40%, leading to robust type-I quantum confinement and photoluminescence at energies lower than that of bulk GaAs. This method can be extended to other zinc blende and diamond cubic materials to form novel optoelectronic devices based on tensile SAQDs.
引用
收藏
页码:5017 / 5023
页数:7
相关论文
共 46 条
[1]   Structural and optical properties of low-density and In-rich InAs/GaAs quantum dots [J].
Alloing, B. ;
Zinoni, C. ;
Li, L. H. ;
Fiore, A. ;
Patriarche, G. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)
[2]   Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection [J].
Bakhirkin, YA ;
Kosterev, AA ;
Roller, C ;
Curl, RF ;
Tittel, FK .
APPLIED OPTICS, 2004, 43 (11) :2257-2266
[3]   Effects of antimony and ion damage on carrier localization in molecular-beam-epitaxy-grown GaInNAs [J].
Bank, SR ;
Wistey, MA ;
Yuen, HB ;
Lordi, V ;
Gambin, VF ;
Harris, JS .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (03) :1320-1323
[4]   Self-organized growth of InAs quantum wires and dots on InP(001): The role of vicinal substrates [J].
Bierwagen, O ;
Masselink, WT .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[5]   GROWTH AND PROPERTIES OF ALINAS-GAINAS ALLOYS AND QUANTUM-WELLS ON (110) INP [J].
BROWN, AS ;
METZGER, RA ;
HENIGE, JA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1993, 11 (03) :817-819
[6]   Two-dimensional electron gas formation in undoped In0.75Ga0.25As/In0.75Al0.25As quantum wells [J].
Capotondi, F ;
Biasiol, G ;
Vobornik, I ;
Sorba, L ;
Giazotto, F ;
Cavallini, A ;
Fraboni, B .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (02) :702-706
[7]   Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses [J].
Dai, YT ;
Fan, JC ;
Chen, YF ;
Lin, RM ;
Lee, SC ;
Lin, HH .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (09) :4489-4492
[8]   Roadmap to an Efficient Germanium-on-Silicon Laser: Strain vs. n-Type Doping [J].
Dutt, Birendra ;
Sukhdeo, Devanand S. ;
Nam, Donguk ;
Vulovic, Boris M. ;
Yuan, Ze ;
Saraswat, Krishna C. .
IEEE PHOTONICS JOURNAL, 2012, 4 (05) :2002-2009
[9]   DISLOCATION-FREE STRANSKI-KRASTANOW GROWTH OF GE ON SI(100) [J].
EAGLESHAM, DJ ;
CERULLO, M .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1943-1946
[10]   AN INVESTIGATION OF THE DEEP LEVEL PHOTO-LUMINESCENCE SPECTRA OF INP(MN), INP(FE), AND OF UNDOPED INP [J].
EAVES, L ;
SMITH, AW ;
SKOLNICK, MS ;
COCKAYNE, B .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (07) :4955-4963