Normalized Frobenius condition number of the orthogonal projections of the identity

被引:2
作者
Suarez, Antonio [1 ]
Gonzalez, Luis [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Math, Las Palmas Gran Canaria 35017, Spain
关键词
Frobenius norm minimization; Orthogonal projections; Frobenius condition number; MATRICES;
D O I
10.1016/j.jmaa.2012.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the orthogonal projection (in the Frobenius sense) AN of the identity matrix I onto the matrix subspace AS (A is an element of R-nxn, S being an arbitrary subspace of R-nxn). Lower and upper bounds on the normalized Frobenius condition number of matrix AN are given. Furthermore, for every matrix subspace S subset of R-nxn, a new index (kappa) over cap (F) (A, S), which generalizes the normalized Frobenius condition number of matrix A, is defined and analyzed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:510 / 516
页数:7
相关论文
共 12 条
  • [1] [Anonymous], 1996, Iterative Methods for Sparse Linear Systems
  • [2] [Anonymous], 1994, ITERATIVE SOLUTION M, DOI DOI 10.1017/CBO9780511624100
  • [4] Geometrical properties of the Frobenius condition number for positive definite matrices
    Chehab, Jean-Paul
    Raydan, Marcos
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2089 - 2097
  • [5] Orthogonal projections of the identity:: Spectral analysis and applications to approximate inverse preconditioning
    González, L
    [J]. SIAM REVIEW, 2006, 48 (01) : 66 - 75
  • [6] Horn R.A., 2012, Matrix Analysis
  • [7] Householder A.S., 1964, THEORY MATRIX NUMERI
  • [8] Li H., 2011, J INEQ APPL, V2011
  • [9] Approximate inverse computation using Frobenius inner product
    Montero, G
    González, L
    Flórez, E
    García, MD
    Suárez, A
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2002, 9 (03) : 239 - 247
  • [10] A generalization of the Moore-Penrose inverse related to matrix subspaces of Cnxm
    Suarez, Antonio
    Gonzalez, Luis
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 514 - 522