Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach

被引:156
作者
Askarzadeh, Alireza [1 ]
Rezazadeh, Alireza [2 ]
机构
[1] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy Management & Optimizat, Kerman, Iran
[2] Shahid Beheshti Univ, Fac Elect & Comp Engn, GC, Tehran 1983963113, Iran
关键词
Solar cell; Maximum power point; Electrical parameters identification; Bird mating optimizer; EQUIVALENT-CIRCUIT; ALGORITHM; MODULE;
D O I
10.1016/j.solener.2013.01.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Maximum power point of solar cells can be extracted by knowing the values of the electrical parameters. The validity of the obtained result depends on the accuracy of the model parameters. Hence, it is important to use a superior optimization technique to identify the optimal values of the parameters. Recently, a metaheuristic optimization algorithm, bird mating optimizer (BMO), has been devised which tries to metaphorically imitate the mating strategies of bird species. BMO employs several searching patterns to explore the region under consideration. This ability helps the algorithm to maintain the diversity and avoid premature convergence, and therefore, get close to the global solution. In this paper, the electrical parameters of a 57 mm diameter commercial (RTC France) silicon solar cell are identified using BMO. The optimal parameters are then used to extract the maximum power point of the system. The accuracy of the proposed parameter identification approach is compared with the results found by the other optimization techniques. Simulation results accentuate the superior potential of BMO algorithm. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 21 条
[1]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[2]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[3]  
Askarzadeh A, 2012, INT J ENERGY RES
[4]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[5]   Artificial neural network training using a new efficient optimization algorithm [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED SOFT COMPUTING, 2013, 13 (02) :1206-1213
[6]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249
[7]   Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks [J].
Bahgat, ABG ;
Helwa, NH ;
Ahamd, GE ;
El Shenawy, ET .
RENEWABLE ENERGY, 2004, 29 (03) :443-457
[8]   A COMPARATIVE-STUDY OF EXTRACTION METHODS FOR SOLAR-CELL MODEL PARAMETERS [J].
CHAN, DSH ;
PHILLIPS, JR ;
PHANG, JCH .
SOLID-STATE ELECTRONICS, 1986, 29 (03) :329-337
[9]  
Easwarakhanthan T., 1986, International Journal of Solar Energy, V4, P1, DOI 10.1080/01425918608909835
[10]   Simulated Annealing algorithm for photovoltaic parameters identification [J].
El-Naggar, K. M. ;
AlRashidi, M. R. ;
AlHajri, M. F. ;
Al-Othrnan, A. K. .
SOLAR ENERGY, 2012, 86 (01) :266-274