Superdiffusive trajectories in Brownian motion

被引:22
|
作者
Duplat, Jerome [1 ]
Kheifets, Simon [2 ,3 ]
Li, Tongcang [2 ,3 ]
Raizen, Mark G. [2 ,3 ]
Villermaux, Emmanuel [4 ]
机构
[1] INAC, CEA UJF Grenoble 1, UMR E 9004, Serv Basses Temp, F-38054 Grenoble, France
[2] Univ Texas Austin, Ctr Nonlinear Dynam, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[4] Aix Marseille Univ, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille 13, France
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 02期
关键词
PAIR DISPERSION;
D O I
10.1103/PhysRevE.87.020105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Brownian motion of a microscopic particle in a fluid is one of the cornerstones of statistical physics and the paradigm of a random process. One of the most powerful tools to quantify it was provided by Langevin, who explicitly accounted for a short-time correlated "thermal" force. The Langevin picture predicts ballistic motion, < x(2)> similar to t(2) at short-time scales, and diffusive motion < x(2)> similar to t at long-time scales, where x is the displacement of the particle during time t, and the average is taken over the thermal distribution of initial conditions. The Langevin equation also predicts a superdiffusive regime, where < x(2)> similar to t(3), under the condition that the initial velocity is fixed rather than distributed thermally. We analyze the motion of an optically trapped particle in air and indeed find t(3) dispersion. This observation is a direct proof of the existence of the random, rapidly varying force imagined by Langevin. DOI: 10.1103/PhysRevE.87.020105
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Brownian motion
    Giorgio Parisi
    Nature, 2005, 433 : 221 - 221
  • [42] The Longitudinal Superdiffusive Motion of Block Copolymer in a Tight Nanopore
    Nowicki, Waldemar
    POLYMERS, 2020, 12 (12) : 1 - 19
  • [43] Trajectories of the ribosome as a Brownian nanomachine
    Dashti, Ali
    Schwander, Peter
    Langlois, Robert
    Fung, Russell
    Li, Wen
    Hosseinizadeh, Ahmad
    Liao, Hstau Y.
    Pallesen, Jesper
    Sharma, Gyanesh
    Stupina, Vera A.
    Simon, Anne E.
    Dinman, Jonathan D.
    Frank, Joachim
    Ourmazd, Abbas
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (49) : 17492 - 17497
  • [44] Superdiffusive motion with fractional power-law exponents
    Sajitz, M.
    Metzner, C.
    Raupach, C.
    Fabry, B.
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 624 - 626
  • [45] Brownian Brownian Motion-I
    Chernov, Nikolai
    Dolgopyat, Dmitry
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 198 (927) : VII - +
  • [46] Extremal statistics for first-passage trajectories of drifted Brownian motion under stochastic resetting
    Guo, Wusong
    Yan, Hao
    Chen, Hanshuang
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (02):
  • [47] Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion
    舒慧生
    阚秀
    周海涛
    JournalofDonghuaUniversity(EnglishEdition), 2010, 27 (04) : 530 - 534
  • [48] Using a geometric Brownian motion to control a Brownian motion and vice versa
    Lefebvre, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 69 (01) : 71 - 82
  • [49] Using a geometric Brownian motion to control a Brownian motion and vice versa
    Lefebvre, M.
    Stochastic Processes and their Applications, 69 (01):
  • [50] Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion
    Chaumont, L
    Doney, RA
    PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) : 519 - 534