Towards an Awareness of Time Series Anomaly Detection Models' Adversarial Vulnerability

被引:2
|
作者
Tariq, Shahroz [1 ]
Le, Binh M. [2 ]
Woo, Simon S. [3 ]
机构
[1] Data61 CSIRO, Sydney, NSW, Australia
[2] Sungkyunkwan Univ, Coll Comp & Informat, Seoul, South Korea
[3] Sungkyunkwan Univ, Dept Artificial Intelligence, Seoul, South Korea
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
基金
新加坡国家研究基金会;
关键词
Adversarial Attack; Anomaly Detection; Time Series; Classification;
D O I
10.1145/3511808.3557073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time series anomaly detection is extensively studied in statistics, economics, and computer science. Over the years, numerous methods have been proposed for time series anomaly detection using deep learning-based methods. Many of these methods demonstrate state-of-the-art performance on benchmark datasets, giving the false impression that these systems are robust and deployable in many practical and industrial real-world scenarios. In this paper, we demonstrate that the performance of state-of-the-art anomaly detection methods is degraded substantially by adding only small adversarial perturbations to the sensor data. We use different scoring metrics such as prediction errors, anomaly, and classification scores over several public and private datasets ranging from aerospace applications, server machines, to cyber-physical systems in power plants. Under well-known adversarial attacks from Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) methods, we demonstrate that state-of-the-art deep neural networks (DNNs) and graph neural networks (GNNs) methods, which claim to be robust against anomalies and have been possibly integrated in real-life systems, have their performance drop to as low as 0%. To the best of our understanding, we demonstrate, for the first time, the vulnerabilities of anomaly detection systems against adversarial attacks. The overarching goal of this research is to raise awareness towards the adversarial vulnerabilities of time series anomaly detectors.
引用
收藏
页码:3534 / 3544
页数:11
相关论文
共 50 条
  • [1] Time Series Anomaly Detection With Adversarial Reconstruction Networks
    Liu, Shenghua
    Zhou, Bin
    Ding, Quan
    Hooi, Bryan
    Zhang, Zhengbo
    Shen, Huawei
    Cheng, Xueqi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4293 - 4306
  • [2] Adversarial Graph Neural Network for Multivariate Time Series Anomaly Detection
    Zheng, Bolong
    Ming, Lingfeng
    Zeng, Kai
    Zhou, Mengtao
    Zhang, Xinyong
    Ye, Tao
    Yang, Bin
    Zhou, Xiaofang
    Jensen, Christian S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7612 - 7626
  • [3] Point-Correlate Adversarial Transformer for Unsupervised Multivariate Time Series Anomaly Detection
    Li, Huan
    Kong, Xiangjie
    Shen, Guojiang
    Yang, Xiaoran
    Yang, Yao
    Collotta, Mario
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 297 - 302
  • [4] Self-adversarial variational autoencoder with spectral residual for time series anomaly detection
    Liu, Yunxiao
    Lin, Youfang
    Xiao, QinFeng
    Hu, Ganghui
    Wang, Jing
    NEUROCOMPUTING, 2021, 458 (458) : 349 - 363
  • [5] An adversarial contrastive autoencoder for robust multivariate time series anomaly detection
    Yu, Jiahao
    Gao, Xin
    Zhai, Feng
    Li, Baofeng
    Xue, Bing
    Fu, Shiyuan
    Chen, Lingli
    Meng, Zhihang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [6] TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks
    Geiger, Alexander
    Liu, Dongyu
    Alnegheimish, Sarah
    Cuesta-Infante, Alfredo
    Veeramachaneni, Kalyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 33 - 43
  • [7] Adversarial Transformer-Based Anomaly Detection for Multivariate Time Series
    Yu, Xinying
    Zhang, Kejun
    Liu, Yaqi
    Zou, Bing
    Wang, Jun
    Wang, Wenbin
    Qian, Rong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2471 - 2480
  • [8] Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection
    Huang X.
    Zhang F.
    Fan H.
    Xi L.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (08): : 1655 - 1667
  • [9] IoT-GAN: Anomaly Detection for Time Series in IoT Based on Generative Adversarial Networks
    Chen, Xiaofei
    Zhang, Shuo
    Jiang, Qiao
    Chen, Jiayuan
    Huang, Hejiao
    Gu, Chonglin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 682 - 694
  • [10] Dis-AE-LSTM: Generative Adversarial Networks for Anomaly Detection of Time Series Data
    Mao, Sheng
    Guo, Jiansheng
    Gu, Taoyong
    Ma, Zhong
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 330 - 336