HEAT KERNELS OF METRIC TREES AND APPLICATIONS

被引:6
|
作者
Frank, Rupert L. [1 ]
Kovarik, Hynek [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Brescia, Dipartimento Matemat, I-25123 Brescia, Italy
关键词
heat kernel; metric tree; eigenvalue estimate; Sobolev inequality; SCHRODINGER-OPERATORS; INEQUALITIES; EIGENVALUES; HARDY; ROZENBLUM;
D O I
10.1137/120886297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the heat semigroup generated by the Laplace operator on metric trees. Among our results we show how the behavior of the associated heat kernel depends on the geometry of the tree. As applications we establish new eigenvalue estimates for Schrodinger operators on metric trees.
引用
收藏
页码:1027 / 1046
页数:20
相关论文
共 50 条
  • [11] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Niko Marola
    Michele Miranda
    Nageswari Shanmugalingam
    Potential Analysis, 2016, 45 : 609 - 633
  • [12] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Marola, Niko
    Miranda, Michele, Jr.
    Shanmugalingam, Nageswari
    POTENTIAL ANALYSIS, 2016, 45 (04) : 609 - 633
  • [13] The Li-Yau inequality and heat kernels on metric measure spaces
    Jiang, Renjin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 29 - 57
  • [14] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Jiang, Renjin
    Li, Huaiqian
    Zhang, Huichun
    POTENTIAL ANALYSIS, 2016, 44 (03) : 601 - 627
  • [15] On gradient estimates for heat kernels
    Devyver, Baptiste
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (05) : 717 - 779
  • [16] Heat kernels of Lorentz cones
    Ding, HM
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (02): : 169 - 173
  • [17] Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (04) : 1485 - 1549
  • [18] NLS ground states on metric trees: existence results and open questions
    Dovetta, Simone
    Serra, Enrico
    Tilli, Paolo
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (03): : 1223 - 1240
  • [19] Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees
    Kigami, Jun
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2674 - 2730
  • [20] Lower estimates of heat kernels for non-local Dirichlet forms on metric measure spaces
    Grigor'yan, Alexander
    Hu, Eryan
    Hu, Jiaxin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (08) : 3311 - 3346