Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning

被引:1
作者
Shen, Huibin [1 ]
Szedmak, Sandor
Brouard, Celine
Rousu, Juho
机构
[1] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
来源
DISCOVERY SCIENCE, (DS 2016) | 2016年 / 9956卷
关键词
Multiple kernel learning; Kernel target alignment; Soft margin SVM; One-class SVM; METABOLITE IDENTIFICATION; ALGORITHMS;
D O I
10.1007/978-3-319-46307-0_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The two-stage multiple kernel learning (MKL) algorithms gained the popularity due to their simplicity and modularity. In this paper, we focus on two recently proposed two-stage MKL algorithms: ALIGNF and TSMKL. We first show through a simple vectorization of the input and target kernels that ALIGNF corresponds to a non-negative least squares and TSMKL to a non-negative SVM in the transformed space. Then we propose ALIGNF+, a soft version of ALIGNF, based on the observation that the dual problem of ALIGNF is essentially a one-class SVM problem. It turns out that the ALIGNF+ just requires an upper bound on the kernel weights of original ALIGNF. This upper bound makes ALIGNF+ interpolate between ALIGNF and the uniform combination of kernels. Our experiments demonstrate favorable performance and improved robustness of ALIGNF+ comparing to ALIGNF. Experiments data and code written in python are freely available at github (https://github.com/aalto-ics-kepaco/softALIGNF).
引用
收藏
页码:427 / 441
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 2007, PROC 24 ICML
[2]  
Cortes C., 2013, ICML-13, P46, DOI DOI 10.1007/978-1-4471-4351-2_3
[3]  
Cortes C, 2013, ADV NEURAL INFORM PR, V26, P2760
[4]  
Cortes C, 2012, J MACH LEARN RES, V13, P795
[5]  
Cristianini N, 2002, ADV NEUR IN, V14, P367
[6]   Searching molecular structure databases with tandem mass spectra using CSI:FingerID [J].
Duehrkop, Kai ;
Shen, Huibin ;
Meusel, Marvin ;
Rousu, Juho ;
Boecker, Sebastian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (41) :12580-12585
[7]  
Evgeniou T, 2005, J MACH LEARN RES, V6, P615
[8]  
Gönen M, 2011, J MACH LEARN RES, V12, P2211
[9]   Multimodal semi-supervised learning for image classification [J].
Guillaumin, Matthieu ;
Verbeek, Jakob ;
Schmid, Cordelia .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :902-909
[10]   Metabolite identification and molecular fingerprint prediction through machine learning [J].
Heinonen, Markus ;
Shen, Huibin ;
Zamboni, Nicola ;
Rousu, Juho .
BIOINFORMATICS, 2012, 28 (18) :2333-2341