Curvature dynamics and long-range effects on fluid-fluid interfaces with colloids

被引:11
作者
Tiribocchi, A. [1 ,2 ]
Bonaccorso, F. [1 ]
Lauricella, M. [2 ]
Melchionna, S. [3 ]
Montessori, A. [4 ]
Succi, S. [1 ,2 ,5 ]
机构
[1] Ist Italiano Tecnol, Ctr Life Nano Sci La Sapienza, I-00161 Rome, Italy
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, CNR, ISC, Ple A Moro 2, I-00185 Rome, Italy
[4] Univ Rome, Dept Engn, Roma Tre Via Vito Volterra 62, I-00146 Rome, Italy
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Inst Appl Computat Sci, Cambridge, MA 02138 USA
基金
欧洲研究理事会;
关键词
DISCRETIZED BOLTZMANN-EQUATION; LATTICE-BOLTZMANN; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; FRACTIONAL KINETICS; LIQUID-GAS; MODEL; EMULSIONS; RHEOLOGY; FORCES;
D O I
10.1039/c8sm02396d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the dynamics of a phase-separating binary fluid, containing colloidal dumbbells anchored to the fluid-fluid interface. Extensive lattice Boltzmann-immersed boundary method simulations reveal that the presence of soft dumbbells can significantly affect the curvature dynamics of the interface between phase-separating fluids, even though the coarsening dynamics is left nearly unchanged. In addition, our results show that the curvature dynamics exhibits distinct non-local effects, which might be exploited for the design of new soft mesoscale materials. We point out that the inspection of the statistical dynamics of the curvature can disclose new insights into local inhomogeneities of the binary fluid configuration, as a function of the volume fraction and aspect ratio of the dumbbells.
引用
收藏
页码:2848 / 2862
页数:15
相关论文
共 66 条
[1]   Swarming bacteria migrate by Levy Walk [J].
Ariel, Gil ;
Rabani, Amit ;
Benisty, Sivan ;
Partridge, Jonathan D. ;
Harshey, Rasika M. ;
Be'er, Avraham .
NATURE COMMUNICATIONS, 2015, 6
[2]   ANOMALOUS TRANSPORT IN TURBULENT PLASMAS AND CONTINUOUS-TIME RANDOM-WALKS [J].
BALESCU, R .
PHYSICAL REVIEW E, 1995, 51 (05) :4807-4822
[3]   Distribution of single-molecule line widths [J].
Barkai, E ;
Silbey, R .
CHEMICAL PHYSICS LETTERS, 1999, 310 (3-4) :287-295
[4]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[5]   Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations [J].
Benzi, R. ;
Sbragaglia, M. ;
Succi, S. ;
Bernaschi, M. ;
Chibbaro, S. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)
[6]  
Berhier L., 2011, DYNAMICAL HETEROGENE
[7]   MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations [J].
Bernaschi, M. ;
Melchionna, S. ;
Succi, S. ;
Fyta, M. ;
Kaxiras, E. ;
Sircar, J. K. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1495-1502
[8]   A Review on Functionally Gradient Materials (FGMs) and Their Applications [J].
Bhavar, Valmik ;
Kattire, Prakash ;
Thakare, Sandeep ;
Patil, Sachin ;
Singh, R. K. P. .
2017 2ND INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS RESEARCH AND MANUFACTURING TECHNOLOGIES (AMRMT 2017), 2017, 229
[9]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[10]   Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases [J].
Cates, M. E. ;
Henrich, O. ;
Marenduzzo, D. ;
Stratford, K. .
SOFT MATTER, 2009, 5 (20) :3791-3800