Quantum-reduced loop gravity: Cosmology

被引:66
作者
Alesci, Emanuele [1 ,2 ]
Cianfrani, Francesco [3 ]
机构
[1] FAU Erlangen Nurnberg, Inst Quantum Grav, D-91058 Erlangen, Germany
[2] Uniwersytet Warszawski, Inst Fizyki Teoretycznej, PL-00681 Warsaw, Poland
[3] Uniwersytet Wroclawski, Inst Fizyki Teoretycznej, PL-50204 Wroclaw, Poland
关键词
MASTER CONSTRAINT PROGRAM; SPIN DYNAMICS; CONNECTIONS; VARIABLES; GEOMETRY; SPACE; AREA;
D O I
10.1103/PhysRevD.87.083521
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a new framework for loop quantum gravity: mimicking the spin foam quantization procedure we propose to study the symmetric sectors of the theory imposing the reduction weakly on the full kinematical Hilbert space of the canonical theory. As a first application of quantum-reduced loop gravity we study the inhomogeneous extension of the Bianchi I model. The emerging quantum cosmological model represents a simplified arena on which the complete canonical quantization program can be tested. The achievements of this analysis could elucidate the relationship between loop quantum cosmology and the full theory. DOI: 10.1103/PhysRevD.87.083521
引用
收藏
页数:21
相关论文
共 62 条
[21]   A GENERAL-SOLUTION OF THE EINSTEIN EQUATIONS WITH A TIME SINGULARITY [J].
BELINSKII, VA ;
KHALATNIKOV, IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1982, 31 (06) :639-667
[22]   Towards spinfoam cosmology [J].
Bianchi, Eugenio ;
Rovelli, Carlo ;
Vidotto, Francesca .
PHYSICAL REVIEW D, 2010, 82 (08)
[23]   Homogeneous loop quantum cosmology [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (13) :2595-2615
[24]   Effective equations for isotropic quantum cosmology including matter [J].
Bojowald, Martin ;
Hernandez, Hector ;
Skirzewski, Aureliano .
PHYSICAL REVIEW D, 2007, 76 (06)
[25]   Observational Constraints on Loop Quantum Cosmology [J].
Bojowald, Martin ;
Calcagni, Gianluca ;
Tsujikawa, Shinji .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[26]   Lessons from Toy-Models for the Dynamics of Loop Quantum Gravity [J].
Bonzom, Valentin ;
Laddha, Alok .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[27]   Dynamics for a 2-vertex quantum gravity model [J].
Borja, Enrique F. ;
Diaz-Polo, Jacobo ;
Garay, Inaki ;
Livine, Etera R. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (23)
[28]  
Brink D. M., 1994, Angular Momentum
[29]   Properties of the volume operator in loop quantum gravity: I. Results [J].
Brunnemann, Johannes ;
Rideout, David .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (06)
[30]   Consistency of holonomy-corrected scalar, vector, and tensor perturbations in loop quantum cosmology [J].
Cailleteau, Thomas ;
Barrau, Aurelien ;
Vidotto, Francesca ;
Grain, Julien .
PHYSICAL REVIEW D, 2012, 86 (08)