Decentralized Federated Learning for Over-Parameterized Models

被引:3
作者
Qin, Tiancheng [1 ]
Etesami, S. Rasoul [1 ]
Uribe, Cesar A. [2 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Coordinated Sci Lab, Urbana, IL 61801 USA
[2] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
来源
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC) | 2022年
基金
美国国家科学基金会;
关键词
Decentralized Federated Learning; Decentralized Optimization; Local SGD; Overparameterization;
D O I
10.1109/CDC51059.2022.9992924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern machine learning, especially deep learning, features models that are often highly expressive and over-parameterized. They can interpolate the data by driving the empirical loss close to zero. We analyze the convergence rate of decentralized stochastic gradient descent (SGD), which is at the core of decentralized federated learning (DFL), for these over-parameterized models. Our analysis covers the setting of decentralized SGD with time-varying networks, local updates and heterogeneous data. We establish strong convergence guarantees with or without the assumption of convex objectives that either improves upon the existing literature or is the first for the regime.
引用
收藏
页码:5200 / 5205
页数:6
相关论文
共 24 条
  • [11] Decentralized Federated Learning: Balancing Communication and Computing Costs
    Liu, Wei
    Chen, Li
    Zhang, Wenyi
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 131 - 143
  • [12] Ma SY, 2018, 35 INT C MACHINE LEA, V80
  • [13] McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
  • [14] Distributed Subgradient Methods for Multi-Agent Optimization
    Nedic, Angelia
    Ozdaglar, Asurrian
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (01) : 48 - 61
  • [15] Qin T., 2022, ARXIV220306798
  • [16] Qin T., 2022, ARXIV220112719
  • [17] The future of digital health with federated learning
    Rieke, Nicola
    Hancox, Jonny
    Li, Wenqi
    Milletari, Fausto
    Roth, Holger R.
    Albarqouni, Shadi
    Bakas, Spyridon
    Galtier, Mathieu N.
    Landman, Bennett A.
    Maier-Hein, Klaus
    Ourselin, Sebastien
    Sheller, Micah
    Summers, Ronald M.
    Trask, Andrew
    Xu, Daguang
    Baust, Maximilian
    Cardoso, M. Jorge
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [18] Sagun L, 2017, ARXIV170604454
  • [19] Stich S.U, 2018, ICLR 2019 INT C LEAR
  • [20] DISTRIBUTED ASYNCHRONOUS DETERMINISTIC AND STOCHASTIC GRADIENT OPTIMIZATION ALGORITHMS
    TSITSIKLIS, JN
    BERTSEKAS, DP
    ATHANS, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (09) : 803 - 812