The Analytical Solutions of Stochastic-Fractional Drinfel'd-Sokolov-Wilson Equations via (G′/G)-Expansion Method

被引:36
作者
Al-Askar, Farah M. [1 ]
Cesarano, Clemente [2 ]
Mohammed, Wael W. [3 ,4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Int Telemat Univ Uninettuno, Sect Math, Vittorio Emanuele II 39, I-00186 Rome, Italy
[3] Univ Hail, Dept Math, Coll Sci, Hail 2440, Saudi Arabia
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
关键词
fractional DSW equations; stochastic DSW equations; Brownian motion; (G '/G)-expansion method; TRAVELING-WAVE SOLUTIONS; NONLINEAR EVOLUTION; TANH METHOD; STABILIZATION; PDES;
D O I
10.3390/sym14102105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fractional-stochastic Drinfel'd-Sokolov-Wilson equations (FSDSWEs) forced by multiplicative Brownian motion are assumed. This equation is employed in mathematical physics, plasma physics, surface physics, applied sciences, and population dynamics. The (G'/G)-expansion method is utilized to find rational, hyperbolic, and trigonometric stochastic solutions for FSDSWEs. Because of the priority of FSDSWEs, the derived solutions are more useful and effective in understanding various important physical phenomena. Furthermore, we used the MATLAB package to create 3D graphs for specific solutions in order to investigate the effect of fractional-order and Brownian motions on the solutions of FSDSWEs.
引用
收藏
页数:12
相关论文
共 37 条
[1]  
[Anonymous], 1985, J. Math. Sci, DOI [DOI 10.1007/BF02105860, 10.1007/BF02105860]
[2]  
Arnold L, 1995, LECT NOTES MATH, V1609, P1
[3]  
Arora R., 2013, Adv. Sci. Eng. Med., V5, P1105
[4]  
Bibi S., 2014, J. Egypt. Math. Soc., V22, P517
[5]  
Calin O., 2015, An informal introduction to stochastic calculus with applications
[6]   Stabilisation of linear PDES, by Stratonovich noise [J].
Caraballo, T ;
Robinson, JC .
SYSTEMS & CONTROL LETTERS, 2004, 53 (01) :41-50
[7]   Stabilisation of differential inclusions and PDEs without uniqueness by noise [J].
Caraballo, Tomas ;
Langa, Jose A. ;
Valero, Jose .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (06) :1375-1392
[8]   Exact solutions to fractional Drinfel'd-Sokolov-Wilson equations [J].
Chen, Shuangqing ;
Liu, Yang ;
Wei, Lixin ;
Guan, Bing .
CHINESE JOURNAL OF PHYSICS, 2018, 56 (02) :708-720
[9]  
Drinfeld V.G., 1981, Sov. Math. Dokl., V23, P457
[10]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392