Porous scaffold of TiO2 for dendrite-free lithium metal anode

被引:22
作者
Zhou, Meijuan [1 ]
Lyu, Yingchun [1 ]
Liu, Yang [1 ]
Guo, Bingkun [1 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Lithium batteries; Lithium metal anode; 3D conductive scaffold; Electrolyte additives; Solid electrolyte interface; Lithium dendrite; SELECTIVE DEPOSITION; STABLE HOST; LI; ION; PERFORMANCE; BATTERIES; CAPACITY; GROWTH; ELECTROCHEMISTRY; ELECTROLYTES;
D O I
10.1016/j.jallcom.2019.03.320
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anode is of great interest for advanced lithium rechargeable batteries such as lithium-air and lithium-sulfur batteries, owing to its high volumetric and gravimetric energy density. There are, however, two major challenges limit its practical application, which are the lithium dendrite growth and low Coulombic efficiency. Here, we demonstrate that the lithium dendrite growth and continuous decomposition of electrolyte can be effectively suppressed by constructing ideal porous TiO2 modified Cu electrodes (PTCEs) and building a stable solid electrolyte interphase (SEI).On the one hand, PTCEs can provide ample space for lithium deposition, alleviating the huge volumetric variation during cycling. On the other hand, the originally formed LixTiO2 can work as a hybrid ionic/electronic conductor, reducing the lithium nucleation overpotential. Combined with additives of fluoroethylene carbonate (FEC) and LiNO3, electrolyte decomposition has been further inhibited. As a result, the Coulombic efficiency of lithium plating/stripping is highly stable at 98.6% for more than 150 cycles. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:364 / 370
页数:7
相关论文
共 59 条
[1]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[2]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[3]   Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Song, Wei-Li ;
Fan, Li-Zhen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[4]   Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities [J].
Choudhury, Snehashis ;
Archer, Lynden A. .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (02)
[5]   Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling [J].
Diao, Yan ;
Xie, Kai ;
Xiong, Shizhao ;
Hong, Xiaobin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1816-A1821
[6]   Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery [J].
Ding, Bing ;
Shen, Laifa ;
Xu, Guiyin ;
Nie, Ping ;
Zhang, Xiaogang .
ELECTROCHIMICA ACTA, 2013, 107 :78-84
[7]   Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode [J].
Ding, Fei ;
Xu, Wu ;
Chen, Xilin ;
Zhang, Jian ;
Engelhard, Mark H. ;
Zhang, Yaohui ;
Johnson, Bradley R. ;
Crum, Jarrod V. ;
Blake, Thomas A. ;
Liu, Xingjiang ;
Zhang, Ji-Guang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1894-A1901
[8]   Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode [J].
Guo, Jing ;
Wen, Zhaoyin ;
Wu, Meifen ;
Jin, Jun ;
Liu, Yu .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 51 :59-63
[9]   Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J].
Guo, Yanpeng ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2017, 29 (29)
[10]   Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries [J].
Heine, Jennifer ;
Hilbig, Peter ;
Qi, Xin ;
Niehoff, Philip ;
Winter, Martin ;
Bieker, Peter .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A1094-A1101