GaAs nanopillar-array solar cells employing in situ surface passivation

被引:194
作者
Mariani, Giacomo [1 ]
Scofield, Adam C. [1 ]
Hung, Chung-Hong [1 ]
Huffaker, Diana L. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
美国国家科学基金会;
关键词
OPTICAL-ABSORPTION ENHANCEMENT; CORE-SHELL NANOWIRES; DOPANT DISTRIBUTION; SILICON NANOWIRES; LIGHT-ABSORPTION; WINDOW LAYER; PERFORMANCE;
D O I
10.1038/ncomms2509
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arrays of III-V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p-n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm(-2) and fill factors of 62% with high external quantum efficiencies > 70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells [J].
Agrawal, Mukul ;
Peumans, Peter .
OPTICS EXPRESS, 2008, 16 (08) :5385-5396
[2]   Optimized light absorption in Si wire array solar cells [J].
Alaeian, Hadiseh ;
Atre, Ashwin C. ;
Dionne, Jennifer A. .
JOURNAL OF OPTICS, 2012, 14 (02)
[3]   Coupling of Light into Nanowire Arrays and Subsequent Absorption [J].
Anttu, N. ;
Xu, H. Q. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) :7183-7187
[4]   SCHOTTKY-BARRIER AT THE INDIUM TIN OXIDE NORMAL-GAAS INTERFACE - EFFECT OF SURFACE ARSENIC DEFICIENCY [J].
BALASUBRAMANIAN, N ;
SUBRAHMANYAM, A .
THIN SOLID FILMS, 1990, 193 (1-2) :528-535
[5]  
Björk MT, 2009, NAT NANOTECHNOL, V4, P103, DOI [10.1038/NNANO.2008.400, 10.1038/nnano.2008.400]
[6]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]
[7]   Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate [J].
Cirlin, G. E. ;
Bouravleuv, A. D. ;
Soshnikov, I. P. ;
Samsonenko, Yu. B. ;
Dubrovskii, V. G. ;
Arakcheeva, E. M. ;
Tanklevskaya, E. M. ;
Werner, P. .
NANOSCALE RESEARCH LETTERS, 2010, 5 (02) :360-363
[8]   GaAs Core-Shell Nanowires for Photovoltaic Applications [J].
Czaban, Josef A. ;
Thompson, David A. ;
LaPierre, Ray R. .
NANO LETTERS, 2009, 9 (01) :148-154
[9]   Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires [J].
Dan, Yaping ;
Seo, Kwanyong ;
Takei, Kuniharu ;
Meza, Jhim H. ;
Javey, Ali ;
Crozier, Kenneth B. .
NANO LETTERS, 2011, 11 (06) :2527-2532
[10]   Indium-based ohmic contacts to n-GaAs, fabricated using an ion-assisted deposition technique [J].
Davies, DW ;
Morgen, DV ;
Thomas, H .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1999, 14 (07) :615-620