Sets of zero density containing integers with at most two prime factors

被引:17
作者
Dartyge, C
Mauduit, C
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] CNRS, Inst Math Luminy, UPR 9016, F-13288 Marseille 9, France
关键词
D O I
10.1006/jnth.2001.2681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t, r is an element of N, alpha is an element of R, with 2 less than or equal to t < r and 0.512 < alpha < 1. For t > r(alpha) and r > r(0)(alpha), we prove that there exists infinitely many integers with at most two prime factors and having no digit exceeding t - 1 in their base r expansion. When t = r - 1 this result holds whenever r greater than or equal to 5. (C) 2001 Elsevier Science.
引用
收藏
页码:230 / 255
页数:26
相关论文
共 10 条
[1]  
[Anonymous], 1946, PRINCETON MATH SERIE
[2]   Quasi-prime numbers whose base-r versions lack certain numbers [J].
Dartyge, C ;
Mauduit, C .
JOURNAL OF NUMBER THEORY, 2000, 81 (02) :270-291
[3]   On arithmetic properties of integers with missing digits - I: Distribution in residue classes [J].
Erdos, P ;
Mauduit, C ;
Sarkozy, A .
JOURNAL OF NUMBER THEORY, 1998, 70 (02) :99-120
[4]   On arithmetic properties of integers with missing digits II:: Prime factors [J].
Erdos, P ;
Mauduit, C ;
Sárközy, A .
DISCRETE MATHEMATICS, 1999, 200 (1-3) :149-164
[5]   Sums of digits and quasi-prime numbers [J].
Fouvry, E ;
Mauduit, C .
MATHEMATISCHE ANNALEN, 1996, 305 (03) :571-599
[6]  
Fouvry E, 1996, ACTA ARITH, V77, P339
[7]  
Friedlander J, 1996, PROG MATH, V138, P411
[8]  
GREAVES G, 1989, NUMBER THEORY TRACE, P289
[9]  
Mauduit C, 1997, ACTA ARITH, V81, P145
[10]  
Montgomery H. L., 1971, LECT NOTES MATH, V227