A posteriori error analysis for solving the Navier-Stokes problem and convection-diffusion equation

被引:4
作者
Agroum, Rahma [1 ,2 ]
机构
[1] Tunis El Manar Univ, Fac Sci Tunis, Tunis, Tunisia
[2] Univ Paris 06, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
关键词
a posteriori analysis; convection-diffusion equations; finite element discretization; Navier-Stokes problem; SPECTRAL DISCRETIZATION; APPROXIMATION; HEAT;
D O I
10.1002/num.22204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the finite element discretization of the Navier-Stokes problem coupled with convection-diffusion equations where both the viscosity and the diffusion coefficients depend on the temperature. Existence and uniqueness of a solution are established. We prove a posteriori error estimates.
引用
收藏
页码:401 / 418
页数:18
相关论文
共 22 条
[1]  
Adams RA., 1975, Sobolev Spaces
[2]  
Agroum R., 2014, THESIS
[3]   Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation [J].
Agroum, Rahma ;
Bernardi, Christine ;
Satouri, Jamil .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :59-82
[4]   SPECTRAL DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION [J].
Agroum, Rahma ;
Aouadi, Saloua Mani ;
Bernardi, Christine ;
Satouri, Jamil .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03) :621-639
[5]  
[Anonymous], 1986, Theory and Algorithms
[6]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[7]   Density results in sobolev spaces whose elements vanish on a part of the boundary [J].
Bernard, Jean-Marie Emmanuel .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (06) :823-846
[8]   Coupling of Navier-Stokes equations and heat - The model and its approximation using the finite-element method [J].
Bernardi, C ;
Metivet, B ;
PernaudThomas, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (07) :871-921
[9]  
Bernardi C., 2004, COLLECTION MATH APPL, V45, P312
[10]  
Brezis H., 1983, ANAL FONCTIONNELLE T, P234