The TP53 fertility network

被引:14
|
作者
Paskulin, Diego d'Avila [2 ,3 ]
Paixao-Cortes, Vanessa Rodrigues [2 ,4 ]
Hainaut, Pierre [5 ]
Bortolini, Maria Catira [2 ,4 ]
Ashton-Prolla, Patricia [1 ,2 ,3 ]
机构
[1] Hosp Clin Porto Alegre, Serv Genet Med, BR-90035903 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Programa Posgrad Genet & Biol Mol, Porto Alegre, RS, Brazil
[3] Hosp Clin Porto Alegre, Lab Med Genom, Porto Alegre, RS, Brazil
[4] Univ Fed Rio Grande do Sul, Lab Evolucao Humana & Mol, Porto Alegre, RS, Brazil
[5] Int Prevent Res Inst, Lyon, France
关键词
TP53; fertility; p53; network; SINGLE NUCLEOTIDE POLYMORPHISM; TUMOR-SUPPRESSOR PATHWAY; BREAST-CANCER; P53; GENE; REPRODUCTION; VARIANTS; MOUSE; IMPLANTATION; ACTIVATION;
D O I
10.1590/S1415-47572012000600008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The TP53 gene, first described in 1979, was identified as a tumor suppressor gene in 1989, when it became clear that its product, the p53 nuclear phosphoprotein, was frequently inactivated in many different forms of cancers. Nicknamed "guardian of the genome", TP53 occupies a central node in stress response networks. The p53 protein has a key role as transcription factor in limiting oncogenesis through several growth suppressive functions, such as initiating apoptosis, senescence, or cell cycle arrest. The p53 protein is directly inactivated in about 50% of all tumors as a result of somatic gene mutations or deletions, and over 80% of tumors demonstrate dysfunctional p53 signaling. Beyond the undeniable importance of p53 as a tumor suppressor, an increasing number of new functions for p53 have been reported, including its ability to regulate energy metabolism, to control autophagy, and to participate in various aspects of differentiation and development. Recently, studies on genetic variations in TP53 among different populations have led to the notion that the p53 protein might play an important role in regulating fertility. This review summarizes current knowledge on the basic functions of different genes of the TP53 family and TP53 pathway with respect to fertility. We also provide original analyses based on genomic and genotype databases, providing further insights into the possible roles of the TP53 pathway in human reproduction.
引用
收藏
页码:939 / 946
页数:8
相关论文
共 50 条
  • [1] The role of TP53 network in the pathogenesis of chronic lymphocytic leukemia
    Wang, Cheng
    Wang, Xin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2013, 6 (07): : 1223 - 1229
  • [2] Impact of TP53 mutations in breast cancer: Clinicopathological features and prognosisImpact of TP53 mutations in breast CA
    Li, Xuerui
    Chen, Xiaoqing
    Wen, Lingzhu
    Wang, Yulei
    Chen, Bo
    Xue, Yunlian
    Guo, Liping
    Liao, Ning
    THORACIC CANCER, 2020, 11 (07) : 1861 - 1868
  • [3] Disruption of the TP53 locus in osteosarcoma leads to TP53 promoter gene fusions and restoration of parts of the TP53 signalling pathway
    Saba, Karim H.
    Difilippo, Valeria
    Kovac, Michal
    Cornmark, Louise
    Magnusson, Linda
    Nilsson, Jenny
    van den Bos, Hilda
    Spierings, Diana C. J.
    Bidgoli, Mahtab
    Jonson, Tord
    Sumathi, Vaiyapuri P.
    Brosjoe, Otte
    Staaf, Johan
    Foijer, Floris
    Styring, Emelie
    Nathrath, Michaela
    Baumhoer, Daniel
    Nord, Karolin H.
    JOURNAL OF PATHOLOGY, 2024, 262 (02) : 147 - 160
  • [4] Optimisation of TP53 reporters by systematic dissection of synthetic TP53 response elements
    Trauernicht, Max
    Rastogi, Chaitanya
    Manzo, Stefano G.
    Bussemaker, Harmen J.
    van Steensel, Bas
    NUCLEIC ACIDS RESEARCH, 2023, 51 (18) : 9690 - 9702
  • [5] Sarcomas in TP53 Germline Mutation Carriers A Review of the IARC TP53 Database
    Ognjanovic, Simona
    Olivier, Magali
    Bergemann, Tracy L.
    Hainaut, Pierre
    CANCER, 2012, 118 (05) : 1387 - 1396
  • [6] The relationship of TP53 R72P polymorphism to disease outcome and TP53 mutation in myelodysplastic syndromes
    McGraw, K. L.
    Zhang, L. M.
    Rollison, D. E.
    Basiorka, A. A.
    Fulp, W.
    Rawal, B.
    Jerez, A.
    Billingsley, D. L.
    Lin, H-Y
    Kurtin, S. E.
    Yoder, S.
    Zhang, Y.
    Guinta, K.
    Mallo, M.
    Sole, F.
    Calasanz, M. J.
    Cervera, J.
    Such, E.
    Gonzalez, T.
    Nevill, T. J.
    Haferlach, T.
    Smith, A. E.
    Kulasekararaj, A.
    Mufti, G.
    Karsan, A.
    Maciejewski, J. P.
    Sokol, L.
    Epling-Burnette, P. K.
    Wei, S.
    List, A. F.
    BLOOD CANCER JOURNAL, 2015, 5 : e291 - e291
  • [7] The TP53 gene promoter is not methylated in families suggestive of Li-Fraumeni syndrome with no germline TP53 mutations
    Finkova, Alena
    Vazna, Alzbeta
    Hrachovina, Ondrej
    Bendova, Sarka
    Prochazkova, Kamila
    Sedlacek, Zdenek
    CANCER GENETICS AND CYTOGENETICS, 2009, 193 (01) : 63 - 66
  • [8] Intronic TP53 Polymorphisms Are Associated with Increased Δ133TP53 Transcript, Immune Infiltration and Cancer Risk
    Eiholzer, Ramona A.
    Mehta, Sunali
    Kazantseva, Marina
    Drummond, Catherine J.
    McKinney, Cushla
    Young, Katie
    Slater, David
    Morten, Brianna C.
    Avery-Kiejda, Kelly A.
    Lasham, Annette
    Fleming, Nicholas
    Morrin, Helen R.
    Reader, Karen
    Royds, Janice A.
    Landmann, Michael
    Petrich, Simone
    Reddel, Roger
    Huschtscha, Lily
    Taha, Ahmad
    Hung, Noelyn A.
    Slatter, Tania L.
    Braithwaite, Antony W.
    CANCERS, 2020, 12 (09) : 1 - 18
  • [9] The TP53 Gene Network in a Postgenomic Era
    Soussi, Thierry
    HUMAN MUTATION, 2014, 35 (06) : 641 - 642
  • [10] The TP53 signaling network in mammals and worms
    Jolliffe, A. Kristine
    Derry, W. Brent
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2013, 12 (02) : 129 - 141