Self-crosslinkable poly(urethane urea)-reinforced silica aerogels

被引:30
作者
Duan, Yannan [1 ]
Jana, Sadhan C. [1 ]
Lama, Bimala [2 ]
Espe, Matthew P. [2 ]
机构
[1] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA
[2] Univ Akron, Dept Chem, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
STRUCTURE-PROPERTY RELATIONSHIPS; POROUS 3D NANOSTRUCTURES; MECHANICAL-PROPERTIES; HYBRID; REINFORCEMENT; POLYURETHANE; AMINE; SAXS;
D O I
10.1039/c5ra11769k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mechanically reinforced organic-inorganic hybrid silica aerogels are produced from simultaneous hydrolysis and condensation reactions of silane precursors - tetraethoxy silane (TEOS) and aminopropyltriethoxysilane (APTES) - and silane-modified polyurethane urea molecules each carrying multiple (>= 3) reactive silane groups. In this manner, the post-gelation crosslinking reactions are avoided, the amount of polymer introduced into the aerogel structures is controlled, and the chain length between two crosslink points is tailored. The long chain polymer molecules introduce a certain degree of flexibility to the hybrid aerogel structures. The morphology, compressive properties, and surface area are obtained respectively using scanning electron microscopy, Instron tensile testers, and Brunauer-Emmett-Teller (BET) surface area analysis. The data on solid state C-13 and Si-29 NMR spectra reveal chemical reactions of the silane-modified polymers with the silica particle networks. Small angle X-ray scattering (SAXS) data are used to determine the fractal dimension of the silica networks. It is found that the self-crosslinkable multifunctional polyurethane urea chains form coatings on the silica networks and produce large enhancements in compressive modulus although with increases in shrinkage and bulk density.
引用
收藏
页码:71551 / 71558
页数:8
相关论文
共 48 条
[1]   Surface characterization by nitrogen adsorption of silica aerogels synthesized from various Si(OR)4 and R"Si(OR′)3 precursors [J].
Al-Oweini, Rami ;
El-Rassy, Houssam .
APPLIED SURFACE SCIENCE, 2010, 257 (01) :276-281
[2]   Composite aerogels for sensing applications [J].
Anderson, ML ;
Rolison, DR ;
Merzbacher, CI .
ENGINEERED NANOSTRUCTURAL FILMS AND MATERIALS, 1999, 3790 :38-42
[3]   Improved method for preparation of anhydrous silica by microwave irradiation with spectroscopic characterization and toxicity assay [J].
Ashfaq, Muhammad ;
Tabassum, Rukhsana ;
Ahmed, Muhammad Mahboob ;
Mehmood, Karamat ;
Asghar, M. ;
Hussain, Tanveer .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (04) :847-853
[4]   SMALL-ANGLE X-RAY-SCATTERING INVESTIGATION OF SUBMICROSCOPIC POROSITY WITH FRACTAL PROPERTIES [J].
BALE, HD ;
SCHMIDT, PW .
PHYSICAL REVIEW LETTERS, 1984, 53 (06) :596-599
[5]   High resolution patterning of silica aerogels [J].
Bertino, MF ;
Hund, JF ;
Sosa, J ;
Zhang, G ;
Sotiriou-Leventis, C ;
Leventis, N ;
Tokuhiro, AT ;
Terry, J .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 333 (01) :108-110
[6]   Advanced solid state NMR techniques for the characterization of sol-gel-derived materials [J].
Bonhomme, Christian ;
Coelho, Cristina ;
Baccile, Niki ;
Gervais, Christel ;
Azais, Thierry ;
Babonneau, Florence .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (09) :738-746
[7]  
Brinker C.J., 2013, Sol-gel science: the physics and chemistry of sol-gel processing, DOI 10.1016/C2009-0-22386-5
[8]  
Capadona L. A., 2011, US pat, Patent No. [8,067,478, 8067478]
[9]   Flexible, low-density polymer crosslinked silica aerogels [J].
Capadona, Lynn A. ;
Meador, Mary Ann B. ;
Alunni, Antonella ;
Fabrizio, Eve F. ;
Vassilaras, Plousia ;
Leventis, Nicholas .
POLYMER, 2006, 47 (16) :5754-5761
[10]   A SAXS STUDY OF SILICA AEROGELS [J].
CRAIEVICH, A ;
AEGERTER, MA ;
DOSSANTOS, DI ;
WOIGNIER, T ;
ZARZYCKI, J .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1986, 86 (03) :394-406