SELMER GROUPS IN TWIST FAMILIES OF ELLIPTIC CURVES

被引:2
作者
Inam, Ilker [1 ]
机构
[1] Uludag Univ, Fac Art & Sci, Dept Math, Gorukle, Bursa, Turkey
关键词
Elliptic curves; Birch; Swinnerton-Dyer conjecture; zeta-functions and related questions; MODULAR-FORMS;
D O I
10.2989/16073606.2012.742255
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to give some numerical data related to the order of the Selmer groups in twist families of elliptic curves. To do this we assume the Birch and Swinnerton-Dyer conjecture is true and we use a celebrated theorem of Waldspurger to get a fast algorithm to compute L-E(1). Having an extensive amount of data we compare the distribution of the order of the Selmer groups by functions of type alpha(log log(X))(1+epsilon)/log(X) with epsilon small. We discuss how the "best choice" of alpha is depending on the conductor of the chosen elliptic curves and the congruence classes of twist factors.
引用
收藏
页码:471 / 487
页数:17
相关论文
共 50 条
[41]   On Parameterized Families of Elliptic Curves with Low Embedding Degrees [J].
Zhang Meng ;
Xu Maozhi ;
Hu Zhi ;
Hou Ying .
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (01) :35-41
[42]   Root number in integer parameter families of elliptic curves [J].
Julie Desjardins .
Annales mathématiques du Québec, 2023, 47 :367-387
[43]   Families of elliptic curves with rational 3-torsion [J].
Moody, Dustin ;
Wu, Hongfeng .
JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2011, 5 (3-4) :225-246
[44]   Root number in integer parameter families of elliptic curves [J].
Desjardins, Julie .
ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (02) :367-387
[45]   3-Selmer groups for curves y2=x3+a [J].
Bandini, Andrea .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) :429-445
[46]   3-Selmer groups for curves y2 = x3 + a [J].
Andrea Bandini .
Czechoslovak Mathematical Journal, 2008, 58 :429-445
[47]   On the freeness of anticyclotomic Selmer groups of modular forms [J].
Kim, Chan-Ho ;
Pollack, Robert ;
Weston, Tom .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (06) :1443-1455
[48]   CM cycles on Kuga-Sato varieties over Shimura curves and Selmer groups [J].
Elias, Yara ;
de Vera-Piquero, Carlos .
FORUM MATHEMATICUM, 2018, 30 (02) :321-346
[49]   Euler characteristics and their congruences for multisigned Selmer groups [J].
Ray, Anwesh ;
Sujatha, R. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023, 75 (01) :298-321
[50]   Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions [J].
Kundu, Debanjana .
ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02) :347-362