Fungal pretreatment of lignocellulosic biomass

被引:362
作者
Wan, Caixia [1 ]
Li, Yebo [1 ]
机构
[1] Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Food Agr & Biol Engn, Wooster, OH 44691 USA
关键词
Fungal; Pretreatment; White rot fungi; Biodelignification; Biomass; Biofuel; SOLID-STATE FERMENTATION; WHITE-ROT FUNGI; MANGANESE PEROXIDASE ISOENZYMES; LIGNIN MODEL COMPOUNDS; PHANEROCHAETE-CHRYSOSPORIUM; CERIPORIOPSIS-SUBVERMISPORA; ENZYMATIC-HYDROLYSIS; BIOLOGICAL PRETREATMENT; MICROBIAL PRETREATMENT; PLEUROTUS-OSTREATUS;
D O I
10.1016/j.biotechadv.2012.03.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Pretreatment is a crucial step in the conversion of lignocellulosic biomass to fermentable sugars and biofuels. Compared to thermal/chemical pretreatment, fungal pretreatment reduces the recalcitrance of lignocellulosic biomass by lignin-degrading microorganisms and thus potentially provides an environmentally-friendly and energy-efficient pretreatment technology for biofuel production. This paper provides an overview of the current state of fungal pretreatment by white rot fungi for biofuel production. The specific topics discussed are: 1) enzymes involved in biodegradation during the fungal pretreatment; 2) operating parameters governing performance of the fungal pretreatment; 3) the effect of fungal pretreatment on enzymatic hydrolysis and ethanol production; 4) efforts for improving enzymatic hydrolysis and ethanol production through combinations of fungal pretreatment and physical/chemical pretreatment; 5) the treatment of lignocellulosic biomass with lignin-degrading enzymes isolated from fungal pretreatment, with a comparisor to fungal pretreatment; 6) modeling, reactor design, and scale-up of solid state fungal pretreatment; and 7) the limitations and future perspective of this technology. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1447 / 1457
页数:11
相关论文
共 120 条
[81]   Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw [J].
Rodrigues, M. A. M. ;
Pinto, P. ;
Bezerra, R. M. F. ;
Dias, A. A. ;
Guedes, C. V. M. ;
Cardoso, V. M. G. ;
Cone, J. W. ;
Ferreira, L. M. M. ;
Colaco, J. ;
Sequeira, C. A. .
ANIMAL FEED SCIENCE AND TECHNOLOGY, 2008, 141 (3-4) :326-338
[82]  
RUTTIMANNJOHNSON C, 1993, APPL ENVIRON MICROB, V59, P1792
[83]   Lignocellulosic residues: Biodegradation and bioconversion by fungi [J].
Sanchez, Carmen .
BIOTECHNOLOGY ADVANCES, 2009, 27 (02) :185-194
[84]   Solid-state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus [J].
Sarikaya, A ;
Ladisch, MR .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1999, 82 (01) :1-15
[85]   HEAT-TRANSFER SIMULATION IN SOLID SUBSTRATE FERMENTATION [J].
SAUCEDOCASTANEDA, G ;
GUTIERREZROJAS, M ;
BACQUET, G ;
RAIMBAULT, M ;
VINIEGRAGONZALEZ, G .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (08) :802-808
[86]   EFFECTS OF FUNGAL PRETREATMENT AND STEAM EXPLOSION PRETREATMENT ON ENZYMATIC SACCHARIFICATION OF PLANT BIOMASS [J].
SAWADA, T ;
NAKAMURA, Y ;
KOBAYASHI, F ;
KUWAHARA, M ;
WATANABE, T .
BIOTECHNOLOGY AND BIOENGINEERING, 1995, 48 (06) :719-724
[87]  
Scott GM, 1998, ENV FRIENDLY TECHNOL, P385
[88]   ESR studies of radicals generated by ultrasonic irradiation of lignin solution. An application of the spin trapping method [J].
Seino, T ;
Yoshioka, A ;
Fujiwara, M ;
Chen, KL ;
Erata, T ;
Tabata, M ;
Takai, M .
WOOD SCIENCE AND TECHNOLOGY, 2001, 35 (1-2) :97-106
[89]   Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production [J].
Shi, Jian ;
Sharma-Shivappa, Ratna R. ;
Chinn, Mari ;
Howell, Noura .
BIOMASS & BIOENERGY, 2009, 33 (01) :88-96
[90]   Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium [J].
Shi, Jian ;
Chinn, Mari S. ;
Sharma-Shivappa, Ratna R. .
BIORESOURCE TECHNOLOGY, 2008, 99 (14) :6556-6564