Extension of the intravoxel incoherent motion model to non-gaussian diffusion in head and neck cancer

被引:86
作者
Lu, Yonggang [1 ]
Jansen, Jacobus F. A. [2 ]
Mazaheri, Yousef [1 ,3 ]
Stambuk, Hilda E. [3 ]
Koutcher, Jason A. [1 ,3 ,4 ]
Shukla-Dave, Amita [1 ,3 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[2] Maastricht Univ, Med Ctr, Dept Radiol, Maastricht, Netherlands
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Med Oncol, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
intravoxel incoherent motion; noise rectification; restricted diffusion; perfusion; NOISY MAGNITUDE DATA; WATER DIFFUSION; IN-VIVO; WEIGHTED MR; B-VALUES; LOW SNR; PERFUSION; IMAGES; SIGNAL; BRAIN;
D O I
10.1002/jmri.23770
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To extend the intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) model to restricted diffusion and to simultaneously quantify the perfusion and restricted diffusion parameters in neck nodal metastases. Materials and Methods: The non-Gaussian (NG)-IVIM model was developed and tested on diffusion-weighted MRI data collected on a 1.5-Tesla MRI scanner from eight patients with head and neck cancer. Voxel-wise parameter quantification was performed by using a noise-rectified least-square fitting method. The NG-IVIM, IVIM, Kurtosis, and ADC (apparent diffusion coefficient) models were used for comparison. For each voxel, within the metastatic node, the optimal model was determined using the Bayesian Information Criterion. The voxel percentage preferred by each model was calculated and the optimal model map was generated. Monte Carlo simulations were performed to evaluate the accuracy and precision dependency of the new model. Results: For the eight neck nodes, the range of voxel percentage preferred by the NG-IVIM model was 2.379.3%. The optimal modal maps showed heterogeneities within the tumors. The Monte Carlo simulations demonstrated that the accuracy and precision of the NG-IVIM model improved by increasing signal-to-noise ratio and b value. Conclusion: The NG-IVIM model characterizes perfusion and restricted diffusion simultaneously in neck nodal metastases. J. Magn. Reson. Imaging 2012;36:10881096. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1088 / 1096
页数:9
相关论文
共 39 条
  • [31] Diffusion-weighted imaging of inflammatory myopathies: Polymyositis and dermatomyositis
    Qi, Jing
    Olsen, Nancy J.
    Price, Ronald R.
    Winston, Jason A.
    Park, Jane H.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (01) : 212 - 217
  • [32] Cerebral Gliomas: Diffusional Kurtosis Imaging Analysis of Microstructural Differences
    Raab, Peter
    Hattingen, Elke
    Franz, Kea
    Zanella, Friedhelm E.
    Lanfermann, Heinrich
    [J]. RADIOLOGY, 2010, 254 (03) : 876 - 881
  • [33] Diffusion-weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients
    Riches, S. F.
    Hawtin, K.
    Charles-Edwards, E. M.
    de Souza, N. M.
    [J]. NMR IN BIOMEDICINE, 2009, 22 (03) : 318 - 325
  • [34] ESTIMATING DIMENSION OF A MODEL
    SCHWARZ, G
    [J]. ANNALS OF STATISTICS, 1978, 6 (02) : 461 - 464
  • [35] Intravoxel Incoherent Motion Imaging of Tumor Microenvironment in Locally Advanced Breast Cancer
    Sigmund, E. E.
    Cho, G. Y.
    Kim, S.
    Finn, M.
    Moccaldi, M.
    Jensen, J. H.
    Sodickson, D. K.
    Goldberg, J. D.
    Formenti, S.
    Moy, L.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (05) : 1437 - 1447
  • [36] Diffusion-weighted imaging of the parotid gland:: Influence of the choice of b-values on the apparent diffusion coefficient value
    Thoeny, HC
    De Keyzer, F
    Boesch, C
    Hermans, R
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2004, 20 (05) : 786 - 790
  • [37] Effect of vasodilator hydralazine on tumor microvascular random flow and blood volume as measured by intravoxel incoherent motion (IVIM) weighted MRI in conjunction with Gd-DTPA-Albumin enhanced MRI
    Wang, ZH
    Su, MY
    Najafi, A
    Nalcioglu, O
    [J]. MAGNETIC RESONANCE IMAGING, 2001, 19 (08) : 1063 - 1072
  • [38] Statistical model for diffusion attenuated MR signal
    Yablonskiy, DA
    Bretthorst, GL
    Ackerman, JJH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (04) : 664 - 669
  • [39] Optimization of b-value sampling for diffusion-weighted imaging of the kidney
    Zhang, Jeff L.
    Sigmund, Eric E.
    Rusinek, Henry
    Chandarana, Hersh
    Storey, Pippa
    Chen, Qun
    Lee, Vivian S.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (01) : 89 - 97