Genetic Modification of Closely Related Candida Species

被引:14
作者
Mancera, Eugenio [1 ,2 ]
Frazer, Corey [3 ]
Porman, Allison M. [3 ]
Ruiz-Castro, Susana [1 ]
Johnson, Alexander D. [2 ]
Bennett, Richard J. [3 ]
机构
[1] Inst Politecn Nacl, Dept Ingn Genet, Ctr Invest & Estudios Avanzados, Irapuato, Mexico
[2] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
[3] Brown Univ, Dept Mol Microbiol & Immunol, Providence, RI 02912 USA
基金
美国国家卫生研究院;
关键词
Candida dubliniensis; Candida tropicalis; genetic modification; mNeonGreen; mScarlet; PHENOTYPIC SWITCH; LARGE-SCALE; ALBICANS; CONSTRUCTION; DUBLINIENSIS; DISRUPTION; RESISTANCE; DELETION; GUT;
D O I
10.3389/fmicb.2019.00357
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Species from the genus Candida are among the most important human fungal pathogens. Several of them are frequent commensals of the human microbiota but are also able to cause a variety of opportunistic infections, especially when the human host becomes immunocompromised. By far, most of the research to understand the molecular underpinnings of the pathogenesis of these species has focused on Candida albicans, the most virulent member of the genus. However, epidemiological data indicates that related Candida species are also clinically important. Here, we describe the generation of a set of strains and plasmids to genetically modify C. dubliniensis and C. tropicalis, the two pathogenic species most closely related to C. albicans. C. dubliniensis is an ideal model to understand C. albicans pathogenesis since it is the closest species to C. albicans but considerably less virulent. On the other hand, C. tropicalis is ranked among the four most common causes of infections by Candida species. Given that C. dubliniensis and C. tropicalis are obligate diploids with no known conventional sexual cycle, we generated strains that are auxotrophic for at least two amino acids which allows the tandem deletion of both alleles of a gene by complementing the two auxotrophies. The strains were generated in two different genetic backgrounds for each species-one for which the genomic sequence is available and a second clinically important one. In addition, we have adapted plasmids developed to delete genes and epitope/fluorophore tag proteins in C. albicans so that they can be employed in C. tropicalis. The tools generated here allow for efficient genetic modification of C. dubliniensis and C. tropicalis, and thus facilitate the study of the molecular basis of pathogenesis in these medically relevant fungi.
引用
收藏
页数:13
相关论文
共 50 条
[1]   A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues [J].
Anderson, Matthew Z. ;
Porman, Allison M. ;
Wang, Na ;
Mancera, Eugenio ;
Huang, Denis ;
Cuomo, Christina A. ;
Bennett, Richard J. .
PLOS GENETICS, 2016, 12 (10)
[2]   Transformation of Candida albicans with a synthetic hygromycin B resistance gene [J].
Basso, Luiz R., Jr. ;
Bartiss, Ann ;
Mao, Yuxin ;
Gast, Charles E. ;
Coelho, Paulo S. R. ;
Snyder, Michael ;
Wong, Brian .
YEAST, 2010, 27 (12) :1039-1048
[3]   mScarlet: a bright monomeric red fluorescent protein for cellular imaging [J].
Bindels, Daphne S. ;
Haarbosch, Lindsay ;
van Weeren, Laura ;
Postma, Marten ;
Wieser, Katrin E. ;
Mastop, Marieke ;
Aumonier, Sylvain ;
Gotthard, Guillaume ;
Royant, Antoine ;
Hink, Mark A. ;
Gadella, Theodorus W. J., Jr. .
NATURE METHODS, 2017, 14 (01) :53-56
[4]   Evolution of pathogenicity and sexual reproduction in eight Candida genomes [J].
Butler, Geraldine ;
Rasmussen, Matthew D. ;
Lin, Michael F. ;
Santos, Manuel A. S. ;
Sakthikumar, Sharadha ;
Munro, Carol A. ;
Rheinbay, Esther ;
Grabherr, Manfred ;
Forche, Anja ;
Reedy, Jennifer L. ;
Agrafioti, Ino ;
Arnaud, Martha B. ;
Bates, Steven ;
Brown, Alistair J. P. ;
Brunke, Sascha ;
Costanzo, Maria C. ;
Fitzpatrick, David A. ;
de Groot, Piet W. J. ;
Harris, David ;
Hoyer, Lois L. ;
Hube, Bernhard ;
Klis, Frans M. ;
Kodira, Chinnappa ;
Lennard, Nicola ;
Logue, Mary E. ;
Martin, Ronny ;
Neiman, Aaron M. ;
Nikolaou, Elissavet ;
Quail, Michael A. ;
Quinn, Janet ;
Santos, Maria C. ;
Schmitzberger, Florian F. ;
Sherlock, Gavin ;
Shah, Prachi ;
Silverstein, Kevin A. T. ;
Skrzypek, Marek S. ;
Soll, David ;
Staggs, Rodney ;
Stansfield, Ian ;
Stumpf, Michael P. H. ;
Sudbery, Peter E. ;
Srikantha, Thyagarajan ;
Zeng, Qiandong ;
Berman, Judith ;
Berriman, Matthew ;
Heitman, Joseph ;
Gow, Neil A. R. ;
Lorenz, Michael C. ;
Birren, Bruce W. ;
Kellis, Manolis .
NATURE, 2009, 459 (7247) :657-662
[5]   A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness [J].
Chauvel, Murielle ;
Nesseir, Audrey ;
Cabral, Vitor ;
Znaidi, Sadri ;
Goyard, Sophie ;
Bachellier-Bassi, Sophie ;
Firon, Arnaud ;
Legrand, Melanie ;
Diogo, Dorothee ;
Naulleau, Claire ;
Rossignol, Tristan ;
d'Enfert, Christophe .
PLOS ONE, 2012, 7 (09)
[6]   A standardized toolkit for genetic engineering of CTG Glade yeasts [J].
Defosse, Tatiana A. ;
Courdavault, Vincent ;
Coste, Alix T. ;
Clastre, Marc ;
de Bernonville, Thomas Duge ;
Godon, Charlotte ;
Vandeputte, Patrick ;
Lanoue, Arnaud ;
Touze, Antoine ;
Linder, Tomas ;
Droby, Samir ;
Rosa, Carlos A. ;
Sanglard, Dominique ;
d'Enfert, Christophe ;
Bouchara, Jean-Philippe ;
Giglioli-Guivarc'h, Nathalie ;
Papon, Nicolas .
JOURNAL OF MICROBIOLOGICAL METHODS, 2018, 144 :152-156
[7]   Evolutionary genomics of yeast pathogens in the Saccharomycotina [J].
Gabaldon, Toni ;
Naranjo-Ortiz, Miguel A. ;
Marcet-Houben, Marina .
FEMS YEAST RESEARCH, 2016, 16 (06)
[8]   Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans [J].
Gerami-Nejad, M ;
Hausauer, D ;
McClellan, M ;
Berman, J ;
Gale, C .
YEAST, 2004, 21 (05) :429-436
[9]  
Grahl N, 2017, MSPHERE, V2, DOI [10.1128/mSphere.00218-17, 10.1128/msphere.00218-17]
[10]   GENETICS AND MOLECULAR BIOLOGY IN CANDIDA ALBICANS [J].
Hernday, Aaron D. ;
Noble, Suzanne M. ;
Mitrovich, Quinn M. ;
Johnson, Alexander D. .
METHODS IN ENZYMOLOGY, VOL 470: GUIDE TO YEAST GENETICS:: FUNCTIONAL GENOMICS, PROTEOMICS, AND OTHER SYSTEMS ANALYSIS, 2ND EDITION, 2010, 470 :737-758