Convergence and Stability in Collocation Methods of Equation u′(t) = au(t) plus bu([t])

被引:1
作者
Yan, Han [1 ]
Ma, Shufang [2 ]
Liu, Yanbin [1 ]
Sun, Hongquan [1 ]
机构
[1] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
[2] NE Forest Univ, Dept Math, Harbin 150040, Peoples R China
关键词
RUNGE-KUTTA METHODS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; DELAYS;
D O I
10.1155/2012/125926
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the convergence, global superconvergence, local superconvergence, and stability of collocation methods for u'(t) = au(t) + bu([t]). The optimal convergence order and superconvergence order are obtained, and the stability regions for the collocation methods are determined. The conditions that the analytic stability region is contained in the numerical stability region are obtained, and some numerical experiments are given.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On the approximate solution of dynamic systems derived from the HIV infection of CD+4 T cells using the LRBF-collocation scheme
    Asadi-Mehregan, Fatemeh
    Assari, Pouria
    Dehghan, Mehdi
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 153 : 39 - 50
  • [22] Stability Analysis for Uncertain Delayed T-S Fuzzy Systems
    Yu, Jiali
    Liao, Yong
    [J]. 2014 INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL THEORY AND APPLICATION, 2014, : 71 - 74
  • [23] PROJECTION METHODS FOR LARGE-SCALE T-SYLVESTER EQUATIONS
    Dopico, Froilan M.
    Gonzalez, Javier
    Kressner, Daniel
    Simoncini, Valeria
    [J]. MATHEMATICS OF COMPUTATION, 2016, 85 (301) : 2427 - 2455
  • [24] T-stability of Numerical Solutions for Linear Stochastic Differential Equations with Delay
    WANG Qi Faculty of Applied Mathematics
    [J]. WuhanUniversityJournalofNaturalSciences, 2011, 16 (04) : 277 - 281
  • [25] Exponential Stability of Neutral T-S Fuzzy Neural Networks with Impulses
    Long, Shujun
    Li, Bing
    [J]. ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 66 - 74
  • [26] T-Stability Approach to Variational Iteration Method for Solving Integral Equations
    Saadati, R.
    Vaezpour, S. M.
    Rhoades, B. E.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2009,
  • [27] Stability of a CD4+ T cell viral infection model with diffusion
    Xu, Zhiting
    Xu, Youqing
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (05)
  • [28] EVALUATION OF THE T-STRESS FOR MULTIPLE CRACKS IN AN INFINITE PLATE USING SINGULAR INTEGRAL EQUATION
    Chen, Y. Z.
    Wang, Z. X.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (05)
  • [29] The set of pseudo solutions of the differential equation x(m)=f (t,x) in Banach spaces
    Kubiaczyk, I
    Sikorska-Nowak, A
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 297 - 308
  • [30] A Kneser-Type Theorem for the Equation x(m) = f(t, x) in Locally Convex Spaces
    Szukala, A.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (04): : 1101 - 1106