Geometrical defects in two-dimensional melting of many-particle Yukawa systems

被引:6
|
作者
Radzvilavicius, Arunas [1 ]
机构
[1] UCL, CoMPLEX, London WC1E 6BT, England
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 05期
关键词
DYNAMICS; LIQUIDS; PLASMA; ORDER;
D O I
10.1103/PhysRevE.86.051111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a theoretical polygon construction analysis of two-dimensional melting and freezing transitions in many-particle Yukawa systems. Two-dimensional melting transitions can be characterized as proliferation of geometrical defects-nontriangular polygons, obtained by removing unusually long bonds in the triangulation of particle positions. A liquid state is characterized by the temperature-independent number of quadrilaterals and linearly increasing number of pentagons. We analyze specific types of vertices, classified by the type and distribution of polygons surrounding them, and determine temperature dependencies of their concentrations. Solid-liquid phase transitions are followed by the peaks in the abundances of certain types of vertices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Thermodynamic properties of two-dimensional Yukawa systems
    Vaulina, Olga S.
    Koss , Xeniya G.
    PHYSICS LETTERS A, 2009, 373 (37) : 3330 - 3335
  • [22] Signatures of many-particle correlations in two-dimensional Fourier-transform spectra of semiconductor nanostructures
    Kuznetsova, I.
    Thomas, P.
    Meier, T.
    Zhang, T.
    Li, X.
    Mirin, R. P.
    Cundiff, S. T.
    SOLID STATE COMMUNICATIONS, 2007, 142 (03) : 154 - 158
  • [23] REPRESENTATIONS AND STATISTICS OF MANY-PARTICLE SYSTEMS
    KOGA, T
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (12): : 1505 - 1505
  • [24] Stochastic thermodynamics in many-particle systems
    Imparato, Alberto
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [25] BROWNIAN MOTION IN MANY-PARTICLE SYSTEMS
    WOODBURY, G
    PRAGER, S
    JOURNAL OF CHEMICAL PHYSICS, 1963, 38 (06): : 1446 - &
  • [26] Quantum backflow for many-particle systems
    Barbier, Maximilien
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [27] MANY-PARTICLE SYSTEMS .2.
    POST, HR
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1956, 69 (12): : 936 - 938
  • [28] NOTE ON SYSTEMATICS OF MANY-PARTICLE SYSTEMS
    GOLDBERG, H
    NUOVO CIMENTO A, 1967, 47 (03): : 495 - +
  • [29] NONLINEAR OPTICS OF MANY-PARTICLE SYSTEMS
    BAYM, G
    HELLWARTH, RW
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1965, QE 1 (07) : 309 - +
  • [30] MODEL FOR TUNNELING IN MANY-PARTICLE SYSTEMS
    ARVE, P
    BERTSCH, GF
    NEGELE, JW
    PUDDU, G
    PHYSICAL REVIEW C, 1987, 36 (05): : 2018 - 2025