Weak-type (1,1) bounds for oscillatory singular integrals with rational phases

被引:10
作者
Folch-Gabayet, Magali [1 ]
Wright, James [2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
singular integrals; rational phases; weak-type (1,1); Hardy spaces; TRANSFORMS; OPERATORS;
D O I
10.4064/sm210-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider singular integral operators on R given by convolution with a principal value distribution defined by integrating against oscillating kernels of the form e(iR(x))/x where R(x) = P(x)/Q(x) is a general rational function with real coefficients. We establish weak-type (1,1) bounds for such operators which are uniform in the coefficients, depending only on the degrees of P and Q. It is not always the case that these operators map the Hardy space H-1(R) to L-1(R) and we will characterise those rational phases R(x) = P(x)/Q(x) which do map H-1 to L-1 (and even H-1 to H-1).
引用
收藏
页码:57 / 76
页数:20
相关论文
共 11 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
Carbery A, 1998, REV MAT IBEROAM, V14, P117
[3]   WEAK (1,1) BOUNDS FOR OSCILLATORY SINGULAR-INTEGRALS [J].
CHANILLO, S ;
CHRIST, M .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (01) :141-155
[4]  
FAN DS, 1995, STUD MATH, V114, P105
[5]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+
[6]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[7]   Singular integral operators associated to curves with rational components [J].
Folch-Gabayet, Magali ;
Wright, James .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (03) :1661-1679
[8]  
Pan Y., 1991, REV MAT IBEROAM, V7, P55, DOI DOI 10.4171/RMI/105
[9]   HILBERT INTEGRALS, SINGULAR-INTEGRALS, AND RADON TRANSFORMS .1. [J].
PHONG, DH ;
STEIN, EM .
ACTA MATHEMATICA, 1986, 157 (1-2) :99-157
[10]   HARMONIC-ANALYSIS ON NILPOTENT GROUPS AND SINGULAR-INTEGRALS .1. OSCILLATORY INTEGRALS [J].
RICCI, F ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 73 (01) :179-194