On the mechanism of the shape elongation of embedded nanoparticles

被引:8
作者
Amekura, H. [1 ]
Kluth, P. [2 ]
Mota-Santiago, P. [2 ]
Sahlberg, I [3 ,4 ]
Jantunen, V [3 ,4 ]
Leino, A. A. [3 ,4 ]
Vazquez, H. [3 ,4 ]
Nordlund, K. [3 ,4 ]
Djurabekova, F. [3 ,4 ]
机构
[1] Natl Inst Mat Sci NIMS, Tsukuba, Ibaraki, Japan
[2] Australian Natl Univ ANU, Res Sch Phys, Dept Elect Mat Engn, Canberra, ACT, Australia
[3] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland
[4] Univ Helsinki, Dept Phys, Helsinki, Finland
基金
澳大利亚研究理事会; 芬兰科学院;
关键词
Shape elongation; Ion shaping; Nanoparticle; Swift heavy ion; Two-temperature molecular dynamics; ION IRRADIATION; TRACKS; DEFORMATION; SILICA;
D O I
10.1016/j.nimb.2020.04.038
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The mechanism of the shape elongation of metal nanoparticles (NPs) in silica, which is induced under swift heavy ion irradiation, is discussed with comparing the two candidates: (i) the synergy between the ion hammering and the transient melting of NPs by the inelastic thermal spike and (ii) the thermal pressure and flow model. We show that three experimental results are inconsistent with (i). The latter is supported by two-temperature molecular dynamics simulations, which simulate not only the atomic motions but also the local electron temperatures. A remarkable correlation was observed between the temporal evolution of the silica density around the ion trajectory and that of the aspect ratio of the NP later than similar to 1 ps after the ion impact, while no correlation was observed earlier than similar to 1 ps, even under the assumption of the instantaneous energy deposition.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 50 条
[31]   High stability of the crystalline configuration of Au nanoparticles embedded in silica under ion and electron irradiation [J].
H. G. Silva-Pereyra ;
J. Arenas-Alatorre ;
L. Rodriguez-Fernández ;
A. Crespo-Sosa ;
J. C. Cheang-Wong ;
J. A. Reyes-Esqueda ;
Alicia Oliver .
Journal of Nanoparticle Research, 2010, 12 :1787-1795
[32]   High stability of the crystalline configuration of Au nanoparticles embedded in silica under ion and electron irradiation [J].
Silva-Pereyra, H. G. ;
Arenas-Alatorre, J. ;
Rodriguez-Fernandez, L. ;
Crespo-Sosa, A. ;
Cheang-Wong, J. C. ;
Reyes-Esqueda, J. A. ;
Oliver, Alicia .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (05) :1787-1795
[33]   Engineering embedded metal nanoparticles with ion beam technology [J].
Ren, Feng ;
Xiao, Xiang Heng ;
Cai, Guang Xu ;
BoWang, Jian ;
Jiang, Chang Zhong .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (02) :317-325
[34]   Mass and shape determination of optically levitated nanoparticles [J].
Schellenberg, Bart ;
Behbahani, Mina Morshed ;
Balasubramanian, Nithesh ;
Fikkers, Ties H. ;
Hoekstra, Steven .
APPLIED PHYSICS LETTERS, 2023, 123 (11)
[35]   Shape-induced anisotropy in antiferromagnetic nanoparticles [J].
Gomonay, O. ;
Kondovych, S. ;
Loktev, V. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 354 :125-135
[36]   Swift heavy-ion irradiation-induced shape and structural transformation in cobalt nanoparticles [J].
Sprouster, D. J. ;
Giulian, R. ;
Araujo, L. L. ;
Kluth, P. ;
Johannessen, B. ;
Cookson, D. J. ;
Ridgway, M. C. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (11)
[37]   Polymer based films embedded with high content of ZnSe nanoparticles [J].
Selim, MS ;
Seoudi, R ;
Shabaka, AA .
MATERIALS LETTERS, 2005, 59 (21) :2650-2654
[38]   Enhanced memory effect in organic transistor by embedded silver nanoparticles [J].
Wang, Sumei ;
Leung, Chi-Wah ;
Chan, Paddy K. L. .
ORGANIC ELECTRONICS, 2010, 11 (06) :990-995
[39]   Ferromagnetism of Dy films containing embedded Fe atoms and nanoparticles [J].
Iles, G. N. ;
Binns, C. ;
Baker, S. H. ;
Roy, M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (17) :2509-2515
[40]   Mechanism for in-Situ Iron Nanoparticles Formed during Copper Alloy Solidification [J].
Wang, Qiangsong ;
Song, Zhuofei ;
Feng, Zaiqiang ;
Wang, Zidong .
MANUFACTURING PROCESS TECHNOLOGY, PTS 1-5, 2011, 189-193 :2441-+