Structural analysis of poly(amidoamine) dendrimer immobilized in crosslinked poly(ethylene glycol)

被引:9
|
作者
Taniguchi, Ikuo [1 ]
Kazama, Shingo [1 ]
Jinnai, Hiroshi [2 ,3 ]
机构
[1] Res Inst Innovat Technol Earth, Chem Res Grp, Kizugawa, Kyoto 6190292, Japan
[2] Kyushu Univ, Inst Mat Chem & Engn, Nishi Ku, Fukuoka 8190395, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
Poly(amidoamine) dendrimer; poly(ethylene glycol); CO2 separation membrane; macrophase separation; laser scanning confocal microscope; CO2; SEPARATION; SPINODAL INTERFACE; MEMBRANES; POLYMERS; ARCHITECTURE; DELIVERY;
D O I
10.1002/polb.23095
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymeric membranes comprised of poly(amidoamine) (PAMAM) dendrimer immobilized in a poly(ethylene glycol) (PEG) network exhibit an excellent CO2 separation selectivity over H-2. The CO2 permeability increases with PAMAM dendrimer concentration in the polymeric membrane and becomes 500 times greater than H-2 permeability when the dendrimer content was 50 wt % at ambient conditions (5 kPa of CO2 partial pressure). However, the detailed morphology of the membrane has not been discussed. The immiscibility of PAMAM dendrimer and PEG matrix results in phase separation, which takes place in a couple of microns scale. Especially, laser scanning confocal microscope captures a 3D morphology of the polymeric blend. The obtained 3D reconstructions demonstrate a bicontinuous structure of PAMAM dendrimer-rich and PEG-rich phases, which indicates the presence of PAMAM dendrimer channel penetrating the polymeric membrane, and CO2 will preferentially pass through the dendrimer channel. In addition, Fourier transform of the 3D reconstructions indicates the presence of a periodic structure. An average size of the dendrimer domain calculated is 2-4 mu m in proportion to PAMAM dendrimer concentration. (c) 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012
引用
收藏
页码:1156 / 1164
页数:9
相关论文
共 50 条
  • [41] Stoichiometry and Structure of Poly(amidoamine) Dendrimer-Lipid Complexes
    Kelly, Christopher V.
    Liroff, Meghan G.
    Triplett, L. Devon
    Leroueil, Pascale R.
    Mullen, Douglas G.
    Wallace, Joseph M.
    Meshinchi, Sasha
    Baker, James R., Jr.
    Orr, Bradford G.
    Holl, Mark M. Banaszak
    ACS NANO, 2009, 3 (07) : 1886 - 1896
  • [42] Dodecyltrimethylammonium and Di(dodecyldimethylammonium) bromides interactions with poly (amidoamine) dendrimer
    Bakshi, MS
    Kaura, A
    Mahajan, RK
    Yoshimura, T
    Esumi, K
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 246 (1-3) : 39 - 48
  • [43] Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents
    Howell, B. A.
    Fan, D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2117): : 1515 - 1526
  • [44] Effect of poly(ethylene glycol) molecular weight on CO2/N2 separation performance of poly(amide-12-b-ethylene oxide)/poly(ethylene glycol) blend membranes
    Feng, Shichao
    Ren, Jizhong
    Zhao, Dan
    Li, Hui
    Hua, Kaisheng
    Li, Xinxue
    Deng, Maicun
    JOURNAL OF ENERGY CHEMISTRY, 2019, 28 : 39 - 45
  • [45] Photo-crosslinked poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles for controllable paclitaxel release
    Chang, Longlong
    Wang, Weiwei
    Huang, Pingsheng
    Lv, Zesheng
    Hu, Fuqiang
    Zhang, Jianhua
    Kong, Deling
    Deng, Liandong
    Dong, Anjie
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2013, 24 (16) : 1900 - 1921
  • [46] Convenient Method for Modifying Poly(dimethylsiloxane) with Poly(ethylene glycol) in Microfluidics
    Zhou, Jianhua
    Yan, Hui
    Ren, Kangning
    Dai, Wen
    Wu, Hongkai
    ANALYTICAL CHEMISTRY, 2009, 81 (16) : 6627 - 6632
  • [47] Quantitative analysis of generation and branch defects in G5 poly(amidoamine) dendrimer
    van Dongen, Mallory A.
    Desai, Ankur
    Orr, Bradford G.
    Baker, James R., Jr.
    Holl, Mark M. Banaszak
    POLYMER, 2013, 54 (16) : 4126 - 4133
  • [48] Enhanced dynamic mechanical and shape-memory properties of a poly(ethylene terephthalate)-poly(ethylene glycol) copolymer crosslinked by maleic anhydride
    Chun, BC
    Cha, SH
    Chung, YC
    Cho, JW
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (01) : 27 - 37
  • [49] Segmented block copolymers of poly(ethylene glycol) and poly(ethylene terephthalate)
    García-Gaitán, B
    Pérez-González, ADP
    Martínez-Richa, A
    Luna-Bárcenas, G
    Nuño-Donlucas, SM
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (17) : 4448 - 4457
  • [50] Thermoresponsive Poly(ε-Caprolactone)-Poly(Ethylene/Propylene Glycol) Copolymers as Injectable Hydrogels for Cell Therapies
    Brewer, Kyle
    Gundsambuu, Batjargal
    Marina, Paula Facal
    Barry, Simon C.
    Blencowe, Anton
    POLYMERS, 2020, 12 (02)