Structural analysis of poly(amidoamine) dendrimer immobilized in crosslinked poly(ethylene glycol)

被引:9
|
作者
Taniguchi, Ikuo [1 ]
Kazama, Shingo [1 ]
Jinnai, Hiroshi [2 ,3 ]
机构
[1] Res Inst Innovat Technol Earth, Chem Res Grp, Kizugawa, Kyoto 6190292, Japan
[2] Kyushu Univ, Inst Mat Chem & Engn, Nishi Ku, Fukuoka 8190395, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
Poly(amidoamine) dendrimer; poly(ethylene glycol); CO2 separation membrane; macrophase separation; laser scanning confocal microscope; CO2; SEPARATION; SPINODAL INTERFACE; MEMBRANES; POLYMERS; ARCHITECTURE; DELIVERY;
D O I
10.1002/polb.23095
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymeric membranes comprised of poly(amidoamine) (PAMAM) dendrimer immobilized in a poly(ethylene glycol) (PEG) network exhibit an excellent CO2 separation selectivity over H-2. The CO2 permeability increases with PAMAM dendrimer concentration in the polymeric membrane and becomes 500 times greater than H-2 permeability when the dendrimer content was 50 wt % at ambient conditions (5 kPa of CO2 partial pressure). However, the detailed morphology of the membrane has not been discussed. The immiscibility of PAMAM dendrimer and PEG matrix results in phase separation, which takes place in a couple of microns scale. Especially, laser scanning confocal microscope captures a 3D morphology of the polymeric blend. The obtained 3D reconstructions demonstrate a bicontinuous structure of PAMAM dendrimer-rich and PEG-rich phases, which indicates the presence of PAMAM dendrimer channel penetrating the polymeric membrane, and CO2 will preferentially pass through the dendrimer channel. In addition, Fourier transform of the 3D reconstructions indicates the presence of a periodic structure. An average size of the dendrimer domain calculated is 2-4 mu m in proportion to PAMAM dendrimer concentration. (c) 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012
引用
收藏
页码:1156 / 1164
页数:9
相关论文
共 50 条
  • [31] Thermoresponsive UCST-Type Behavior of Interpolymer Complexes of Poly(ethylene glycol) and Poly(poly(ethylene glycol) methacrylate) Brushes with Poly(acrylic acid) in Isopropanol
    Szabo, Akos
    Bencsko, Gyorgy
    Szarka, Gyorgyi
    Ivan, Bela
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2017, 218 (05)
  • [32] Miscibility of polystyrene with poly(ethylene oxide) and poly(ethylene glycol)
    Abdel-Azim, AAA
    Atta, AM
    Farahat, MS
    Boutros, WY
    JOURNAL OF APPLIED POLYMER SCIENCE, 1998, 69 (08) : 1471 - 1482
  • [33] Preparation and characterization of poly(lactic acid)/poly(ethylene oxide) blend film: effects of poly(ethylene oxide) and poly(ethylene glycol) on the properties
    Saha, Debarghya
    Samal, Sushanta K.
    Biswal, Manoranjan
    Mohanty, Smita
    Nayak, Sanjay K.
    POLYMER INTERNATIONAL, 2019, 68 (01) : 164 - 172
  • [34] Synthesis, Characterization and Application of Biodegradable Crosslinked Carboxymethyl Chitosan/Poly(Ethylene Glycol) Clay Nanocomposites
    Mohamed, Riham R.
    Rizk, Nadia A.
    Abd El Hady, Bothaina M.
    Abdallah, Heba M.
    Sabaa, Magdy W.
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2017, 25 (03) : 667 - 682
  • [35] Preparation and characterization of chitosan composite membranes crosslinked by carboxyl-capped poly(ethylene glycol)
    Cai, Meng-tan
    Zhang, Jia-xing
    Chen, Yuan-wei
    Cao, Jun
    Leng, Meng-tian
    Hu, Shao-dong
    Luo, Xiang-lin
    CHINESE JOURNAL OF POLYMER SCIENCE, 2014, 32 (02) : 236 - 244
  • [36] Rational design of melamine-crosslinked poly(ethylene glycol) membranes for sour gas purification
    Wong, Dana A.
    Haddad, Elizabeth E.
    Lin, Sibo
    Sharber, Seth A.
    Yang, John
    Lawrence III, John A.
    Harrigan, Daniel J.
    Wright, Patrick T.
    Liu, Yang
    Sundell, Benjamin J.
    JOURNAL OF MEMBRANE SCIENCE, 2024, 709
  • [37] Poly(ethylene glycol) crosslinked sulfonated polysulfone composite membranes for forward osmosis
    Ding, Xiaoli
    Liu, Zhiguang
    Hua, Mingming
    Kang, Te
    Li, Xu
    Zhang, Yuzhong
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (39)
  • [38] Improvement of biocompatibility and biodegradability of poly(ethylene succinate) by incorporation of poly(ethylene glycol) segments
    Liu, Cong
    Zeng, Jian-Bing
    Li, Shao-Long
    He, Yi-Song
    Wang, Yu-Zhong
    POLYMER, 2012, 53 (02) : 481 - 489
  • [39] Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications
    Moffat, KL
    Marra, KG
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 71B (01) : 181 - 187
  • [40] Synthesis and Properties of Magnetite Nanoparticles Coated with Poly(ethylene glycol) and Poly(ethylene imine)
    Zhao, Fangyuan
    Zhang, Baolin
    Wang, Jun
    Tu, Zhijiang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 6793 - 6797