Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media

被引:24
|
作者
Lubbers, Nicholas [1 ]
Agarwal, Animesh [2 ]
Chen, Yu [3 ]
Son, Soyoun [4 ,5 ]
Mehana, Mohamed [3 ]
Kang, Qinjun [3 ]
Karra, Satish [3 ]
Junghans, Christoph [6 ]
Germann, Timothy C. [7 ]
Viswanathan, Hari S. [3 ]
机构
[1] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Informat Sci Grp, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Theoret Div, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Earth & Environm Sci Div, Computat Earth Sci Grp, Los Alamos, NM 87545 USA
[4] Univ Grenoble Alpes, Inst Sci Terre, Grenoble, France
[5] Los Alamos Natl Lab, Earth & Environm Sci Div, Geophys Grp, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Appl Comp Sci Grp, Los Alamos, NM 87545 USA
[7] Los Alamos Natl Lab, Theoret Div, Phys & Chem Mat Grp, Los Alamos, NM 87545 USA
关键词
LATTICE-BOLTZMANN METHOD; PHASE-EQUILIBRIA; SHALE GAS; TRANSPORT; SIMULATIONS; ALGORITHMS; ADSORPTION; CHALLENGES; DATABASE; FLUIDS;
D O I
10.1038/s41598-020-69661-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fine-scale models that represent first-principles physics are challenging to represent at larger scales of interest in many application areas. In nanoporous media such as tight-shale formations, where the typical pore size is less than 50 nm, confinement effects play a significant role in how fluids behave. At these scales, fluids are under confinement, affecting key properties such as density, viscosity, adsorption, etc. Pore-scale Lattice Boltzmann Methods (LBM) can simulate flow in complex pore structures relevant to predicting hydrocarbon production, but must be corrected to account for confinement effects. Molecular dynamics (MD) can model confinement effects but is computationally expensive in comparison. The hurdle to bridging MD with LBM is the computational expense of MD simulations needed to perform this correction. Here, we build a Machine Learning (ML) surrogate model that captures adsorption effects across a wide range of parameter space and bridges the MD and LBM scales using a relatively small number of MD calculations. The model computes upscaled adsorption parameters across varying density, temperature, and pore width. The ML model is 7 orders of magnitude faster than brute force MD. This workflow is agnostic to the physical system and could be generalized to further scale-bridging applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Rapid Estimation of Essential Porous Media Properties Using Image-Based Pore-Scale Network Modeling
    Thibodeaux, Timothy W.
    Sheng, Qiang
    Thompson, Karsten E.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (16) : 4474 - 4486
  • [32] Spatial Modeling of Maritime Risk Using Machine Learning
    Rawson, Andrew
    Brito, Mario
    Sabeur, Zoheir
    RISK ANALYSIS, 2022, 42 (10) : 2291 - 2311
  • [33] Numerical Modeling of Momentum Dispersion in Porous Media Based on the Pore Scale Prevalence Hypothesis
    Rao, Feixiong
    Kuznetsov, Andrey, V
    Jin, Yan
    TRANSPORT IN POROUS MEDIA, 2020, 133 (02) : 271 - 292
  • [34] Pore-scale determination of parameters for macroscale modeling of evaporation processes in porous media
    Ahrenholz, B.
    Niessner, J.
    Helmig, R.
    Krafczyk, M.
    WATER RESOURCES RESEARCH, 2011, 47
  • [35] Pore-scale modeling of solute transport in partially-saturated porous media
    Saeibehrouzi, Ali
    Abolfathi, Soroush
    Denissenko, Petr
    Holtzman, Ran
    EARTH-SCIENCE REVIEWS, 2024, 256
  • [36] Hybrid LBM and machine learning algorithms for permeability prediction of porous media: A comparative study
    Kang, Qing
    Li, Kai-Qi
    Fu, Jin -Long
    Liu, Yong
    COMPUTERS AND GEOTECHNICS, 2024, 168
  • [37] Wireless communication channel modeling using machine learning
    Kamruzzaman, M. M.
    Hossin, Md Altab
    Alrashdi, Ibrahim
    Alanazi, Saad
    Alruwaili, Madallah
    Alshammari, Nasser
    Elaiwat, Said
    Zaman, Roksana
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (10):
  • [38] Predictive Modeling and Sentiment Classification of Social Media Through Extreme Learning Machine
    Shafqat-Ul-Ahsaan
    Mourya, Ashish Kumar
    Singh, Parvinder
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 356 - 363
  • [39] Pore scale evaluation of thermal conduction anisotropy in granular porous media using Lattice Boltzmann method
    Askari, R.
    Ikram, M. F.
    Hejazi, S. H.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (04) : 867 - 888
  • [40] Pore-scale study of coke formation and combustion in porous media using lattice Boltzmann method
    Lei, Timan
    Luo, Kai H.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (04) : 5591 - 5599