Decomposing graphs into a constant number of locally irregular subgraphs

被引:29
作者
Bensmail, Julien [1 ]
Merker, Martin [1 ]
Thomassen, Carsten [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
基金
欧洲研究理事会;
关键词
3-FLOW CONJECTURE; MODULO K;
D O I
10.1016/j.ejc.2016.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is locally irregular if no two adjacent vertices have the same degree. The irregular chromatic index chi'(irr)(G) of a graph G is the smallest number of locally irregular subgraphs needed to edge-decompose G. Not all graphs have such a decomposition, but Baudon, Bensmail, Przybylo, and Wozniak conjectured that if G can be decomposed into locally irregular subgraphs, then chi'(irr)(G) <= 3. In support of this conjecture, Przybylo showed that chi'(irr)(G) <= 3 holds whenever G has minimum degree at least 10(10). Here we prove that every bipartite graph G which is not an odd length path satisfies chi'(irr)(G) <= 10. This is the first general constant upper bound on the irregular chromatic index of bipartite graphs. Combining this result with Przybylo's result, we show that chi'(irr)(G) <= 328 for every graph G which admits a decomposition into locally irregular subgraphs. Finally, we show that chi'(irr)(G) <= 2 for every 16-edge-connected bipartite graph G. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 11 条
  • [1] On decomposing regular graphs into locally irregular subgraphs
    Baudon, O.
    Bensmail, J.
    Przybylo, J.
    Wozniak, M.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 90 - 104
  • [2] On the complexity of determining the irregular chromatic index of a graph
    Baudon, Olivier
    Bensmail, Julien
    Sopena, Eric
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 : 113 - 127
  • [3] Bensmail J, 2016, DISCRETE MATH THEOR, V17, P43
  • [4] Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture
    Kalkowski, Maciej
    Karonski, Michal
    Pfender, Florian
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 347 - 349
  • [5] Edge weights and vertex colours
    Karonski, M
    Luczak, T
    Thomason, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) : 151 - 157
  • [6] Nowhere-zero 3-flows and modulo k-orientations
    Lovasz, Laszlo Miklos
    Thomassen, Carsten
    Wu, Yezhou
    Zhang, Cun-Quan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (05) : 587 - 598
  • [7] Przybylo J, 2016, ELECTRON J COMB, V23
  • [8] Seamone B., ARXIV12115122
  • [9] The 3-flow conjecture, factors modulo k, and the 1-2-3-conjecture
    Thomassen, Carsten
    Wu, Yezhou
    Zhang, Cun-Quan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 : 308 - 325
  • [10] Graph factors modulo k
    Thomassen, Carsten
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 106 : 174 - 177