Garding's inequality for higher order elliptic operators with nonpower degeneration

被引:1
|
作者
Iskhokov, S. A. [1 ,2 ]
Gadoev, M. G. [2 ]
Yakushev, I. A. [2 ]
机构
[1] Acad Sci Tajikistan, Inst Math, Dushanbe 734063, Tajikistan
[2] NE Fed Univ, Polytech Inst Branch, Sakha 678174, Yakutiya, Russia
关键词
SMOOTHNESS; EQUATIONS;
D O I
10.1134/S1064562412020172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:215 / 218
页数:4
相关论文
共 50 条
  • [31] Convergence rates and interior estimates in homogenization of higher order elliptic systems
    Niu, Weisheng
    Shen, Zhongwei
    Xu, Yao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (08) : 2356 - 2398
  • [32] Applied higher-order elliptic problems with nonstandard growth structure
    Boureanu, Maria-Magdalena
    Velez-Santiago, Alejandro
    APPLIED MATHEMATICS LETTERS, 2022, 123
  • [33] BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER ELLIPTIC OPERATORS WITH COMPLEX COEFFICIENTS
    Dindos, Martin
    Pipher, Jill
    ANALYSIS & PDE, 2020, 13 (06): : 1897 - 1938
  • [34] The log-Sobolev inequality for spin systems with higher order interactions
    Konstantopoulos, Takis
    Papageorgiou, Ioannis
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [35] An improved maximal inequality for 2D fractional order Schrodinger operators
    Miao, Changxing
    Yang, Jianwei
    Zheng, Jiqiang
    STUDIA MATHEMATICA, 2015, 230 (02) : 121 - 165
  • [36] GREEN'S FUNCTION FOR NONDIVERGENCE ELLIPTIC OPERATORS IN TWO DIMENSIONS
    Dong, Hongjie
    Kim, Seick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) : 4637 - 4656
  • [37] Spectral analysis of higher order differential operators with unbounded coefficients II
    Behncke, Horst
    Nyamwala, Fredrick Oluoch
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 181 - 201
  • [38] The higher order fractional Calderon problem for linear local operators: Uniqueness
    Covi, Giovanni
    Monkkonen, Keijo
    Railo, Jesse
    Uhlmann, Gunther
    ADVANCES IN MATHEMATICS, 2022, 399
  • [39] Construction of Arbitrary Order Conformally Invariant Operators in Higher Spin Spaces
    Ding, Chao
    Walter, Raymond
    Ryan, John
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (03) : 2418 - 2452
  • [40] OPTIMAL SOBOLEV REGULARITY FOR LINEAR SECOND-ORDER DIVERGENCE ELLIPTIC OPERATORS OCCURRING IN REAL-WORLD PROBLEMS
    Disser, Karoline
    Kaiser, Hans-Christoph
    Rehberg, Joachim
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) : 1719 - 1746