Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V)

被引:70
|
作者
Huang, Yanchao [2 ]
Chen, Zheng [2 ]
Liu, Wenju [1 ]
机构
[1] Agr Univ Hebei, Coll Resources & Environm Sci, Baoding 071000, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
Antimony species; Translocation; Iron plaque; Rice Cultivars; RADIAL OXYGEN LOSS; TYPHA-LATIFOLIA; ARSENATE UPTAKE; ACCUMULATION; MOBILITY; COPPER; PLANTS; ROOTS; ENVIRONMENT; PHOSPHORUS;
D O I
10.1007/s11104-011-0973-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background and Aims Characteristically baseline levels of Sb in the environment are low, but problematic local elevation trends arise from anthropogenic activities such as mining and incineration. Arsenic (analog of Sb) accumulation by rice can be reduced by iron (Fe) plaque. A hydroponic experiment was conducted to investigate whether Fe plaque could reduce the uptake and translocation of different Sb species in different rice cultivars. Methods After Fe plaque on rice roots was induced in solution containing 0, 0.2, 0.4, 0.7, 1.2, 2.0 mM Fe2+ for 24 h, seedlings were transferred into nutrient solution with 20 mu M Sb(V) or Sb(III) for 3 d. Results About 60-80% (Sb(III) treatment) and 40-60% (Sb(V) treatment) of the total Sb accumulated in Fe plaque. There was a significant correlation between the concentrations of Sb and Fe on the root surface. A similar relationship was observed in roots and shoots. Cultivar (Jiahua 1) formed the most Fe plaque, had the highest Fe associated Sb sequestration but the lowest Sb concentration in the root interior. Conclusions Fe plaque may act as a 'buffer' for Sb (V) and Sb(III) in the rhizosphere, and cultivars played an important role in the different species Sb uptake and translocation.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [31] Interactive effects of different inorganic As and Se species on their uptake and translocation by rice (Oryza sativa L.) seedlings
    Hu, Ying
    Duan, Gui-Lan
    Huang, Yi-Zong
    Liu, Yun-Xia
    Sun, Guo-Xin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (05) : 3955 - 3962
  • [32] Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution
    Su, YH
    Zhu, YG
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2005, 12 (01) : 21 - 27
  • [33] Can iron plaque affect Sb(III) and Sb(V) uptake by plants under hydroponic conditions
    Ji, Ying
    Vollenweider, Pierre
    Lenz, Markus
    Schulin, Rainer
    Tandy, Susan
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2018, 148 : 168 - 175
  • [34] Evaluation of uptake, translocation, and accumulation of arsenic species by six different Brazilian rice (Oryza sativa L.) cultivars
    Paulelli, Ana Carolina C.
    Martins, Airton Cunha, Jr.
    Batista, Bruno L.
    Barbosa, Fernando, Jr.
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 169 : 376 - 382
  • [35] The Influence of pH on Cadmium Accumulation in Seedlings of Rice (Oryza sativa L.)
    Umed Ali
    Min Zhong
    Tahmina Shar
    Sajid Fiaz
    Lihong Xie
    Guiai Jiao
    Shakeel Ahmad
    Zhonghua Sheng
    Shaoqing Tang
    Xiangjin Wei
    Peisong Hu
    Journal of Plant Growth Regulation, 2020, 39 : 930 - 940
  • [36] The Influence of pH on Cadmium Accumulation in Seedlings of Rice (Oryza sativa L.)
    Ali, Umed
    Zhong, Min
    Shar, Tahmina
    Fiaz, Sajid
    Xie, Lihong
    Jiao, Guiai
    Ahmad, Shakeel
    Sheng, Zhonghua
    Tang, Shaoqing
    Wei, Xiangjin
    Hu, Peisong
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (02) : 930 - 940
  • [37] Effect of selenium on cadmium uptake, translocation and accumulation in rice (Oryza sativa L.)
    Li, H. F.
    Wan, Y. N.
    Wang, Q.
    Yu, Y.
    SELENIUM RESEARCH FOR ENVIRONMENT AND HUMAN HEALTH: PERSPECTIVES, TECHNOLOGIES AND ADVANCEMENTS, 2020, : 135 - 136
  • [38] Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.)
    Pereira, Margarida P.
    Santos, Carla
    Gomes, Ana
    Vasconcelos, Marta W.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 85 : 21 - 30
  • [39] Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.). Zinc uptake by Fe-deficient rice
    Xike Zhang
    Fusuo Zhang
    Daru Mao
    Plant and Soil, 1998, 202 : 33 - 39
  • [40] Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.).: Zinc uptake by Fe-deficient rice
    Zhang, XK
    Zhang, FS
    Mao, DR
    PLANT AND SOIL, 1998, 202 (01) : 33 - 39