Fractional-order modelling and simulation of human ear

被引:22
|
作者
Naghibolhosseini, Maryam [1 ,2 ]
Long, Glenis R. [2 ]
机构
[1] Michigan State Univ, Dept Commun Sci & Disorders, E Lansing, MI 48824 USA
[2] CUNY, Grad Ctr, Dept Speech Language Hearing Sci, New York, NY 10021 USA
关键词
Fractional-order lumped element modelling; fractional-order transmission line; power-law viscoelasticity; human ear modelling; distortion product otoacoustic emissions; HUMAN MIDDLE-EAR; HUMAN TYMPANIC MEMBRANE; OTOACOUSTIC EMISSIONS; TEMPORAL BONES; PRESSURE LEVEL; ANALOG MODEL; POWER-LAW; VISCOELASTICITY; TRANSMISSION; RHEOLOGY;
D O I
10.1080/00207160.2017.1404038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Conventional integer-order lumped element models cannot fully describe the memory-dependent viscoelastic behaviour of bio-tissues. We propose a tunable and more predictive lumped element modelling of fractional-order sense for human ear, which is better adapted to the physical nature of the bio-materials. We develop a computational-mathematical framework for human ear to account for the power-law characteristics of viscoelastic bio-tissues. On the experiment side, we obtain impedance data and distortion product otoacoustic emissions data from several participants, to estimate the round-trip outer-middle ear gain, for parameter fitting and validation of the proposed model. This modelling approach provides a sound basis for data-driven modelling and simulation of the viscoelastic tissues of the human ear.Abbreviations: DPOAE: distortion product otoacoustic emission; FTF: forward transfer function; OMEG: round-trip outer-middle ear gain; RTF: reverse transfer function; TM: tympanic membrane
引用
收藏
页码:1257 / 1273
页数:17
相关论文
共 50 条
  • [41] Haar Wavelet-Based Simulation of the Fractional-Order Systems
    Li, Yuan-lu
    Ge, Hua-min
    Zhao, Wei-wei
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3506 - 3509
  • [42] Numerical simulation of fractional-order dynamical systems in noisy environments
    Mostaghim, Zeinab Salamat
    Moghaddam, Behrouz Parsa
    Haghgozar, Hossein Samimi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6433 - 6447
  • [43] Simulation of Signal Propagation Along Fractional-Order Transmission Lines
    Stefanski, Tomasz P.
    Trofimowicz, Damian
    Gulgowski, Jacek
    PROCEEDINGS OF 2020 27TH INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM (MIXDES), 2020, : 164 - 167
  • [44] The Generalized Fractional-Order Fisher Equation: Stability and Numerical Simulation
    Inan, Bilge
    SYMMETRY-BASEL, 2024, 16 (04):
  • [45] Circuit simulation for synchronization of a fractional-order and integer-order chaotic system
    Chen, Diyi
    Wu, Cong
    Iu, Herbert H. C.
    Ma, Xiaoyi
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1671 - 1686
  • [46] Numerical simulation of fractional-order dynamical systems in noisy environments
    Zeinab Salamat Mostaghim
    Behrouz Parsa Moghaddam
    Hossein Samimi Haghgozar
    Computational and Applied Mathematics, 2018, 37 : 6433 - 6447
  • [47] Chaos in the fractional-order Volta’s system: modeling and simulation
    Ivo Petráš
    Nonlinear Dynamics, 2009, 57 : 157 - 170
  • [48] Numerical simulation algorithm for fractional-order systems implemented in CUDA
    Rosu, Florin
    Bonchis, Cosmin
    Kaslik, Eva
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 63 - 66
  • [49] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [50] Exponential Enclosures for the Verified Simulation of Fractional-Order Differential Equations
    Rauh, Andreas
    FRACTAL AND FRACTIONAL, 2022, 6 (10)