Algebraicity of Hodge loci for variations of Hodge structure

被引:2
作者
Cattani, Eduardo [1 ]
Kaplan, Aroldo [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01002 USA
来源
HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY | 2014年 / 608卷
关键词
INTEGRALS; MONODROMY; MANIFOLDS; PERIODS;
D O I
10.1090/conm/608/12176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are intended to be a companion to Cattani, Deligne, and Kaplan (1995), where the algebraicity of the loci of Hodge classes is proven without appealing to the Hodge conjecture. We give somewhat simplified proofs in the case of variations of Hodge structures over curves and surfaces which may help to clarify the arguments, and discuss some current generalizations, consequences and conjectures based on them.
引用
收藏
页码:59 / 83
页数:25
相关论文
共 50 条
  • [21] Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures
    Deng, Ya
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7
  • [22] Algebraic cycles and the mixed Hodge structure on the fundamental group of a punctured curve
    Eskandari, Payman
    MATHEMATISCHE ANNALEN, 2019, 375 (3-4) : 1665 - 1719
  • [23] ON THE LEFSCHETZ AND HODGE-RIEMANN THEOREMS
    Tien-Cuong Dinh
    Viet-Anh Nguyen
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) : 121 - 144
  • [24] Hodge theory on Alexander invariants - A survey
    Elduque, Eva
    Geske, Christian
    Cueto, Moises Herradon
    Maxim, Laurentiu
    Wang, Botong
    TOPOLOGY AND ITS APPLICATIONS, 2022, 313
  • [25] Mixed Hodge Structures on Alexander Modules
    Elduque, Eva
    Geske, Christian
    Cueto, Moises Herradoen
    Maxim, Laurentiu G.
    Wang, Botong
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 296 (1479) : 1 - 128
  • [26] Asymptotic Hodge theory of vector bundles
    Charbonneau, Benoit
    Stern, Mark
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (03) : 559 - 609
  • [27] COMPATIBILITY OF HODGE THEORY ON ALEXANDER MODULES
    Elduque, Eva
    Cueto, Moises Herradon
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02): : 151 - 189
  • [28] On admissible tensor products in p-adic Hodge theory
    Di Matteo, Giovanni
    COMPOSITIO MATHEMATICA, 2013, 149 (03) : 417 - 429
  • [29] Deformed WZW models and Hodge theory. Part I
    Grimm, Thomas W.
    Monnee, Jeroen
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [30] HODGE IDEALS AND SPECTRUM OF ISOLATED HYPERSURFACE SINGULARITIES
    JUNG, Seung-Jo
    KIM, In-Kyun
    SAITO, Morihiko
    YOON, Youngho
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (02) : 465 - 510