Algebraicity of Hodge loci for variations of Hodge structure

被引:2
作者
Cattani, Eduardo [1 ]
Kaplan, Aroldo [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01002 USA
来源
HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY | 2014年 / 608卷
关键词
INTEGRALS; MONODROMY; MANIFOLDS; PERIODS;
D O I
10.1090/conm/608/12176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are intended to be a companion to Cattani, Deligne, and Kaplan (1995), where the algebraicity of the loci of Hodge classes is proven without appealing to the Hodge conjecture. We give somewhat simplified proofs in the case of variations of Hodge structures over curves and surfaces which may help to clarify the arguments, and discuss some current generalizations, consequences and conjectures based on them.
引用
收藏
页码:59 / 83
页数:25
相关论文
共 50 条
[21]   Algebraic cycles and the mixed Hodge structure on the fundamental group of a punctured curve [J].
Eskandari, Payman .
MATHEMATISCHE ANNALEN, 2019, 375 (3-4) :1665-1719
[22]   Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures [J].
Deng, Ya .
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7
[23]   ON THE LEFSCHETZ AND HODGE-RIEMANN THEOREMS [J].
Tien-Cuong Dinh ;
Viet-Anh Nguyen .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) :121-144
[24]   Hodge theory on Alexander invariants - A survey [J].
Elduque, Eva ;
Geske, Christian ;
Cueto, Moises Herradon ;
Maxim, Laurentiu ;
Wang, Botong .
TOPOLOGY AND ITS APPLICATIONS, 2022, 313
[25]   Mixed Hodge Structures on Alexander Modules [J].
Elduque, Eva ;
Geske, Christian ;
Cueto, Moises Herradoen ;
Maxim, Laurentiu G. ;
Wang, Botong .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 296 (1479) :1-128
[26]   Asymptotic Hodge theory of vector bundles [J].
Charbonneau, Benoit ;
Stern, Mark .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (03) :559-609
[27]   COMPATIBILITY OF HODGE THEORY ON ALEXANDER MODULES [J].
Elduque, Eva ;
Cueto, Moises Herradon .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02) :151-189
[28]   On admissible tensor products in p-adic Hodge theory [J].
Di Matteo, Giovanni .
COMPOSITIO MATHEMATICA, 2013, 149 (03) :417-429
[29]   Deformed WZW models and Hodge theory. Part I [J].
Grimm, Thomas W. ;
Monnee, Jeroen .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
[30]   HODGE IDEALS AND SPECTRUM OF ISOLATED HYPERSURFACE SINGULARITIES [J].
JUNG, Seung-Jo ;
KIM, In-Kyun ;
SAITO, Morihiko ;
YOON, Youngho .
ANNALES DE L INSTITUT FOURIER, 2022, 72 (02) :465-510