Beyond Wiener-Askey expansions: Handling arbitrary PDFs

被引:101
作者
Wan, Xiaoliang [1 ]
Karniadakis, George Em [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
uncertainty; polynomial chaos; stochastic differential equation;
D O I
10.1007/s10915-005-9038-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with stochastic inputs with arbitrary probability measures. Based on the decomposition of the random space of the stochastic inputs, we construct numerically a set of orthogonal polynomials with respect to a conditional probability density function (PDF) in each element and subsequently implement generalized Polynomial Chaos (gPC) locally. Numerical examples show that ME-gPC exhibits both p- and h-convergence for arbitrary probability measures.
引用
收藏
页码:455 / 464
页数:10
相关论文
共 15 条
[1]   On solving elliptic stochastic partial differential equations [J].
Babuska, I ;
Chatzipantelidis, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (37-38) :4093-4122
[2]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[3]   THE ORTHOGONAL DEVELOPMENT OF NON-LINEAR FUNCTIONALS IN SERIES OF FOURIER-HERMITE FUNCTIONALS [J].
CAMERON, RH ;
MARTIN, WT .
ANNALS OF MATHEMATICS, 1947, 48 (02) :385-392
[4]   Solution of stochastic partial differential equations using Galerkin finite element techniques [J].
Deb, MK ;
Babuska, IM ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (48) :6359-6372
[5]  
FRAUENFELDER P, COMPUT METHODS APPL, V194, P205
[6]   ALGORITHM-726 - ORTHPOL - A PACKAGE OF ROUTINES FOR GENERATING ORTHOGONAL POLYNOMIALS AND GAUSS-TYPE QUADRATURE-RULES [J].
GAUTSCHI, W .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1994, 20 (01) :21-62
[7]   ON GENERATING ORTHOGONAL POLYNOMIALS [J].
GAUTSCHI, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03) :289-317
[8]   Stochastic finite elements with multiple random non-Gaussian properties [J].
Ghanem, R .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1999, 125 (01) :26-40
[9]  
GHANEM RG, 1909, STOCHASTIC FINITE EL
[10]   Multi-resolution analysis of Wiener-type uncertainty propagation schemes [J].
Le Maître, OP ;
Najm, HN ;
Ghanem, RG ;
Knio, OM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (02) :502-531