Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization

被引:53
作者
Rizk-Allah, Rizk M. [1 ]
Hassanien, Aboul Ella [2 ]
Slowik, Adam [3 ]
机构
[1] Menoufia Univ, Fac Engn, Shibin Al Kawm, Egypt
[2] Cairo Univ, Fac Comp & Artificial Intelligence, Cairo, Egypt
[3] Koszalin Univ Technol, Dept Elect & Comp Sci, Koszalin, Poland
关键词
Crow search algorithm; Orthogonal; Opposition; Multi-objective optimization; Metaheuristic; Engineering designs; MOORA; PARTICLE SWARM OPTIMIZER; EVOLUTIONARY ALGORITHMS; DESIGN; FRAMEWORK;
D O I
10.1007/s00521-020-04779-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many engineering optimization problems are typically multi-objective in their natures and multidisciplinary with a large number of decision variables. Furthermore, Pareto dominance loses its effectiveness in such situations. Thus, developing a robust optimization algorithm undoubtedly becomes a true challenge. This paper proposes a multi-objective orthogonal opposition-based crow search algorithm (M2O-CSA) for solving large-scale multi-objective optimization problems (LSMOPs). In the M2O-CSA, a multi-orthogonal opposition strategy is employed to mitigate the conflicts among the convergence and distribution of solutions. First, two individuals are randomly chosen to undergo the crossover stage and then orthogonal array is presented to obtain nine individuals. Then individuals are used in the opposition stage to improve the diversity of solutions. The effectiveness of the proposed M2O-CSA is investigated by implementing it on different dimensions of multi-objective optimization problems (MOPs). The Pareto front solutions of these MOPs have various characteristics such as convex, non-convex and discrete. It is also applied to solve multi-objective design applications with distinctive features such as four bar truss (FBT) design, welded beam (WB) deign, disk brake (DB) design, and speed reduced (SR) design, where they involve different characteristics. In this context, a new decision making tool based on multi-objective optimization on the basis of ratio analysis (MOORA) technique is employed to help the designer for extracting the operating point as the best compromise or satisfactory solution to execute the candidate engineering design. Simulation results affirm that the proposed M2O-CSA works efficiently and effectively.
引用
收藏
页码:13715 / 13746
页数:32
相关论文
共 50 条
  • [31] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [32] Reference-point-based multi-objective optimization algorithm with opposition-based voting scheme for multi-label feature selection
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Rahnamayan, Shahryar
    INFORMATION SCIENCES, 2021, 547 : 1 - 17
  • [33] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [34] Multi-objective resistance-capacitance optimization algorithm: An effective multi-objective algorithm for engineering design problems
    Ravichandran, Sowmya
    Manoharan, Premkumar
    Sinha, Deepak Kumar
    Jangir, Pradeep
    Abualigah, Laith
    Alghamdi, Thamer A. H.
    HELIYON, 2024, 10 (17)
  • [35] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262
  • [36] A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems
    Wang, Xianpeng
    Tang, Lixin
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 26 - 33
  • [39] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    J. K. Chong
    Memetic Computing, 2016, 8 : 147 - 165
  • [40] Novel multi-objective optimization algorithm
    Zeng, Jie
    Nie, Wei
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2014, 25 (04) : 697 - 710