Numerical study of Anderson localization of terahertz waves in disordered waveguides

被引:4
|
作者
Lapointe, C. P. [1 ]
Zakharov, P. [1 ]
Enderli, F. [2 ]
Feurer, T. [2 ]
Skipetrov, S. E. [3 ]
Scheffold, F. [1 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[2] Univ Bern, Inst Appl Phys, CH-3012 Bern, Switzerland
[3] Univ Grenoble 1, CNRS, LPMMC UMR 5493, F-38042 Grenoble, France
基金
瑞士国家科学基金会;
关键词
PHOTON LOCALIZATION; MULTIPLE-SCATTERING; DIFFUSION; LIGHT; SUSPENSIONS; SIGNATURES; MATTER;
D O I
10.1209/0295-5075/105/34002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerical study of electromagnetic wave transport in disordered quasione-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO3 waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization. Copyright (c) EPLA, 2014
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Transport of waves in disordered waveguides:: A potential model
    Mello, P. A.
    Yepez, M.
    Froufe-Perez, L. S.
    Saenz, J. J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (02) : 603 - 610
  • [42] Layered superconductors as nonlinear waveguides for terahertz waves
    Savel'ev, Sergey
    Yampol'skii, V. A.
    Rakhmanov, A. L.
    Nori, Franco
    PHYSICAL REVIEW B, 2007, 75 (18):
  • [43] Josephson vortices as flexible waveguides for terahertz waves
    Gulevich, D. R.
    Savel'ev, Sergey
    Yampol'skii, V. A.
    Kusmartsev, F. V.
    Nori, Franco
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (06)
  • [44] ANALYTICAL AND NUMERICAL STUDY OF THE ANDERSON LOCALIZATION LENGTH AND RESIDUAL RESISTIVITY
    AZBEL, MY
    SOVEN, P
    PHYSICAL REVIEW LETTERS, 1982, 49 (10) : 751 - 754
  • [45] STRONG LOCALIZATION OF CLASSICAL WAVES - A NUMERICAL STUDY
    FLESIA, C
    JOHNSTON, R
    KUNZ, H
    EUROPHYSICS LETTERS, 1987, 3 (04): : 497 - 502
  • [46] Anderson localization for two interacting electrons in a disordered chain
    Evangelou, SN
    Xiong, SJ
    Economou, EN
    PHYSICAL REVIEW B, 1996, 54 (12) : 8469 - 8473
  • [47] PROBLEM OF NONTRANSPORT OF ELECTRONS IN DISORDERED SYSTEMS (ANDERSON LOCALIZATION)
    ATHREYA, KB
    SUBRAMANIAN, RR
    KUMAR, N
    CURRENT SCIENCE, 1972, 41 (24): : 867 - 868
  • [48] Anderson localization of composite excitations in disordered optomechanical arrays
    Roque, Thales Figueiredo
    Peano, Vittorio
    Yevtushenko, Oleg M.
    Marquardt, Florian
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [49] Anderson localization in a periodic photonic lattice with a disordered boundary
    Naether, U.
    Meyer, J. M.
    Stuetzer, S.
    Tuennermann, A.
    Nolte, S.
    Molina, M. I.
    Szameit, A.
    OPTICS LETTERS, 2012, 37 (04) : 485 - 487
  • [50] Anderson and Stark localization in GaAs/(AlGa)As disordered superlattices
    Lorusso, GF
    Tassone, F
    Capozzi, V
    Martin, D
    Staehli, JL
    SUPERLATTICES AND MICROSTRUCTURES, 1998, 23 (01) : 9 - 12