Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes

被引:315
作者
Menssen, A [1 ]
Hermeking, H [1 ]
机构
[1] Max Planck Inst Biochem, Independent Junior Res Grp, D-82152 Martinsried, Germany
关键词
D O I
10.1073/pnas.082005599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To identify target genes of the oncogenic transcription factor c-MYC, serial analysis of gene expression (SAGE) was performed after adenoviral expression of c-MYC in primary human umbilical vein endothelial cells: 216 different SAGE tags, corresponding to unique mRNAs, were induced, whereas 260 tags were repressed after c-MYC expression (P < 0.05). The induction of 53 genes was confirmed by using microarray analysis and quantitative real-time PCR: among these genes was MetAP2/p67, which encodes an activator of translational initiation and represents a validated target for inhibition of neovascularization. Furthermore, c-MYC induced the cell cycle regulatory genes CDC2-L1, Cyclin E binding protein 1, and Cyclin B1. The DNA repair genes BRCA1, MSH2, and APEX were induced by c-MYC, suggesting that c-MYC couples DNA replication to processes preserving the integrity of the genome. MNT, a MAX-binding antagonist of c-MYC function, was upregulated, implying a negative feedback loop. In vivo promoter occupancy by c-MYC was detected by chromatin immunoprecipitation for CDK4, Prohibitin, MNT, Cyclin B1, and Cyclin E binding protein 1, showing that these genes are direct c-MYC targets. The c-MYC-regulated genes/tags identified here will help to define the set of bona fide c-MYC targets and may have potential therapeutic value for inhibition of cancer cell proliferation, tumor-vascularization, and restenosis.
引用
收藏
页码:6274 / 6279
页数:6
相关论文
共 39 条
  • [1] ONCOGENIC ACTIVITY OF THE C-MYC PROTEIN REQUIRES DIMERIZATION WITH MAX
    AMATI, B
    BROOKS, MW
    LEVY, N
    LITTLEWOOD, TD
    EVAN, GI
    LAND, H
    [J]. CELL, 1993, 72 (02) : 233 - 245
  • [2] Repression of c-Myc responsive genes in cycling cells causes G(1) arrest through reduction of cyclin E CDK2 kinase activity
    Berns, K
    Hijmans, EM
    Bernards, R
    [J]. ONCOGENE, 1997, 15 (11) : 1347 - 1356
  • [3] Regulation of cyclin D2 gene expression by the Myc/Max/Mad network:: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter
    Bouchard, C
    Dittrich, O
    Kiermaier, A
    Dohmann, K
    Menkel, A
    Eilers, M
    Lüscher, B
    [J]. GENES & DEVELOPMENT, 2001, 15 (16) : 2042 - 2047
  • [4] c-Myc target gene specificity is determined by a post-DNA-binding mechanism
    Boyd, KE
    Wells, J
    Gutman, J
    Bartley, SM
    Farnham, PJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) : 13887 - 13892
  • [5] c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets
    Bush, A
    Mateyak, M
    Dugan, K
    Obaya, A
    Adachi, S
    Sedivy, J
    Cole, M
    [J]. GENES & DEVELOPMENT, 1998, 12 (24) : 3797 - 3802
  • [6] Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion
    Coller, HA
    Grandori, C
    Tamayo, P
    Colbert, T
    Lander, ES
    Eisenman, RN
    Golub, TR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) : 3260 - 3265
  • [7] Dang CV, 1999, MOL CELL BIOL, V19, P1
  • [8] Deconstructing Myc
    Eisenman, RN
    [J]. GENES & DEVELOPMENT, 2001, 15 (16) : 2023 - 2030
  • [9] Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation
    Frank, SR
    Schroeder, M
    Fernandez, P
    Taubert, S
    Amati, B
    [J]. GENES & DEVELOPMENT, 2001, 15 (16) : 2069 - 2082
  • [10] Myc target genes
    Grandori, C
    Eisenman, RN
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (05) : 177 - 181