Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes

被引:316
作者
Menssen, A [1 ]
Hermeking, H [1 ]
机构
[1] Max Planck Inst Biochem, Independent Junior Res Grp, D-82152 Martinsried, Germany
关键词
D O I
10.1073/pnas.082005599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To identify target genes of the oncogenic transcription factor c-MYC, serial analysis of gene expression (SAGE) was performed after adenoviral expression of c-MYC in primary human umbilical vein endothelial cells: 216 different SAGE tags, corresponding to unique mRNAs, were induced, whereas 260 tags were repressed after c-MYC expression (P < 0.05). The induction of 53 genes was confirmed by using microarray analysis and quantitative real-time PCR: among these genes was MetAP2/p67, which encodes an activator of translational initiation and represents a validated target for inhibition of neovascularization. Furthermore, c-MYC induced the cell cycle regulatory genes CDC2-L1, Cyclin E binding protein 1, and Cyclin B1. The DNA repair genes BRCA1, MSH2, and APEX were induced by c-MYC, suggesting that c-MYC couples DNA replication to processes preserving the integrity of the genome. MNT, a MAX-binding antagonist of c-MYC function, was upregulated, implying a negative feedback loop. In vivo promoter occupancy by c-MYC was detected by chromatin immunoprecipitation for CDK4, Prohibitin, MNT, Cyclin B1, and Cyclin E binding protein 1, showing that these genes are direct c-MYC targets. The c-MYC-regulated genes/tags identified here will help to define the set of bona fide c-MYC targets and may have potential therapeutic value for inhibition of cancer cell proliferation, tumor-vascularization, and restenosis.
引用
收藏
页码:6274 / 6279
页数:6
相关论文
共 39 条
[1]   ONCOGENIC ACTIVITY OF THE C-MYC PROTEIN REQUIRES DIMERIZATION WITH MAX [J].
AMATI, B ;
BROOKS, MW ;
LEVY, N ;
LITTLEWOOD, TD ;
EVAN, GI ;
LAND, H .
CELL, 1993, 72 (02) :233-245
[2]   Repression of c-Myc responsive genes in cycling cells causes G(1) arrest through reduction of cyclin E CDK2 kinase activity [J].
Berns, K ;
Hijmans, EM ;
Bernards, R .
ONCOGENE, 1997, 15 (11) :1347-1356
[3]   Regulation of cyclin D2 gene expression by the Myc/Max/Mad network:: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter [J].
Bouchard, C ;
Dittrich, O ;
Kiermaier, A ;
Dohmann, K ;
Menkel, A ;
Eilers, M ;
Lüscher, B .
GENES & DEVELOPMENT, 2001, 15 (16) :2042-2047
[4]   c-Myc target gene specificity is determined by a post-DNA-binding mechanism [J].
Boyd, KE ;
Wells, J ;
Gutman, J ;
Bartley, SM ;
Farnham, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13887-13892
[5]   c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets [J].
Bush, A ;
Mateyak, M ;
Dugan, K ;
Obaya, A ;
Adachi, S ;
Sedivy, J ;
Cole, M .
GENES & DEVELOPMENT, 1998, 12 (24) :3797-3802
[6]   Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion [J].
Coller, HA ;
Grandori, C ;
Tamayo, P ;
Colbert, T ;
Lander, ES ;
Eisenman, RN ;
Golub, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3260-3265
[7]  
Dang CV, 1999, MOL CELL BIOL, V19, P1
[8]   Deconstructing Myc [J].
Eisenman, RN .
GENES & DEVELOPMENT, 2001, 15 (16) :2023-2030
[9]   Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation [J].
Frank, SR ;
Schroeder, M ;
Fernandez, P ;
Taubert, S ;
Amati, B .
GENES & DEVELOPMENT, 2001, 15 (16) :2069-2082
[10]   Myc target genes [J].
Grandori, C ;
Eisenman, RN .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (05) :177-181